Some validation tests for an Algol 60 compiler

B A Wichmann,
National Physical Laboratory,
Teddington, Middlesex, TW11 OLW, UK

NPL Report NAC33, 1973 pp0-66

Abstract

This report contains details of over 100 Algol 60 test programs available
from NPL which can be used to validate a compiler. Interpreting the results
of the tests requires a good knowledge of Algol 60.

Contents

(1 Introduction|

[2

The test system|

3

Programming conventions|

The automatic preparation system|

The conversion program|

Comments on the test programs|

7 Possibl ond

(8

Acknowledgements|

[9_Notes on each test|

[10 Test summary|

(11 The ALGOL Basic symbol table|

1

Introduction

32

36

ALGOL 60 is comparatively well defined. One advantage of this is that it is possible
to devise test programs independently of the compiler. Such tests cannot, of course,
be expected to find all the errors in a compiler. The only possible way to perform a
complete check is to analyse the logic of the compiler which represents an order of
magnitude of more effort than writing the compiler in the first place, and so cannot
be reasonably attempted in the existing state of the art. Hopefully future work on
proving the correctness of algorithms could be extended to include an ALGOL 60
compiler. For a summary of existing research into this area see London [16] and

Lucas [17].

Accepting that tests cannot be complete does not mean that a collection of tests
cannot be useful. An attempt has been made here to collect tests which cover the
major difficulties in the translation of ALGOL 60. At best, these tests could reveal
all the known errors in an implementation, and at worst, such tests demonstrate
that large parts of the compiler apparently work.

All the tests have been checked by executing them with the two compilers that
are available on KDF9. Comments are included here on how the compilers handled
the tests. It is to be hoped that the tests will be run on several systems to enable
detailed comparisons to be made.

Many of the tests are of a controversial nature. In some cases, an implementor
could reasonably state that such programs are not valid ALGOL 60. Even so, the
compiler should deal intelligently with such programs by generating good diagnostic
information. In many other cases, the test programs can be expected to violate a
stated restriction of a compiler, but again, an intelligent message is to be expected.

The test system incorporates a number of special programs written by R S
Scowen, I D Hill [7] and M Woodger. Hopefully it will be possible to add further
tests which are known to have failed in at least one system.

The amount of effort required to run these tests depends upon the experience
of the programmer, the ease of access to the computer and the facilities provided.
Of crucial importance is the ease with which ten or so tests can be run one after
another. As over half the tests are liable to fail to translate, it is necessary to have a
large number of individual programs. As a rough estimate one to two man-months
should be sufficient to run all the tests given reasonable machine access and the
ability to batch several tests together. Testing a new release of a compiler should
be much simpler, involving only a few days work.

2 The test system

It is very important that no punching errors should be introduced in the preparation
of the tests. For this reason, the tests must be formed automatically from cards or
paper tape supplied in a standard format. The formation process can be used to
generate control cards, library requests and other data necessary for execution of
the programs. Since there are over 100 tests, it is obviously important that batches
of tests should be handled automatically by the system. To assist the automatic
handling, the programs use a very simple input-output system, and do not use any
input data except where strictly necessary.

The programs themselves are not reproduced here, since some of them are very
long, and in any case, it would encourage hand conversion. The conversion itself is
merely a transcription of an encoding of the ALGOL basic symbols into the local
hardware representation, To ensure that this is adequate, various programming
conventions are adopted which are known to be necessary because of the nature of
certain implementations.

3 Programming conventions

The following restrictions are observed, except in these tests whose object is to
investigate the nature of the restriction. The system having the particular limitation
is noted in brackets.

1. No spaces in identifiers (Univac 1108)
2. No identifiers that could be reserved words (Atlas (cards) Univac 1108, B5500)

3. No spaces in constants (Univac 1108)

4. No recursion (IFIP)

5. No type-changing on a call-by-name assignment (KDF9)

6. No label parameter to a function or goto out of a function (B5500)

7. Regarding a for loop as a block should not invalidate the program (KDF9,
Whetstone)

8. No strings (B5500)

9. No parameter comments (B5500)

10. No upper case alphabetic characters (B5500, CDC6000, Univac 1103, etc)
11. Only six significant characters in an identifier (IFIP)

12. Not more than 32 characters in an identifier

13. No use before declaration (Elliott, B5500)

14. No integer labels (Atlas, 1900, KDF9, B5500, etc)

15. No side effects on function calls (ALCOR)

These conventions are the main reason why it has not been possible to use many
existing test programs.

A small number of procedures are used for input-output and finding the amount
of processor time used by the program. These procedures are:

real procedure cputime;
comment procedure gives the processor time taken by the
program in arbitrary (but known) units. Microsecouds
are preferred;
<body>;

procedure outreal (channel, x);

value channel, x;

integer channel;

real x;

comment print x to full accuracy, see IFIP
input-output procedures, CACM Vol 7 Mo 10,
pp 628-630. The ACM convention is adopted
on channel numbers. In fact channel is
always 1;
<body>;

procedure inreal (channel, x);

value channel;

integer channel;

real x;

comment [FIP procedure as above. Assigns to x the
next number on the input tape. Channel is
always 2;
<body>;

Every test program requiring some of these procedures or the ALGOL standard
functions will have the following in place of their declaration

library <n>;

where n is a number, which indicates the required procedures by its binary
representation

o n = 29 outreal
e n = 2! cputime

e n = 22 standard functions

3 inreal

on=2

so that library 5; means that the standard functions and outreal are required.

The user can adopt two methods of handling these procedures. The library
symbol can be replaced by the text of the procedures required. Alternatively, a
macrogenerator or a good editor (if available) can be used to alter the calls of
outreal, inreal and cputime to those of routines already available within the system.

The programs use these procedures only when necessary. The output produced
is very small, as the majority of the tests are self-checking. Only two programs use
inreal, the purpose of which is to check that input of real numbers does not have a
consistent bias.

4 The automatic preparation system

Each ALGOL test program, and the data where relevant, is considered to be a
sequence of ALGOL basic symbols. In order to allow convenient output without the
use of an automatic formatting program, the ALGOL basic symbols are extended
to include: space, tab and newline.

The tabulate character is used to indent the begin-end structure of the program
and corresponds to eight spaces. Fewer spaces could be used with advantage if the
representation of the basic symbols in terms of characters is more than that of the
corresponding words. If a reserved word system is being used, then the conversion
must ensure that real array, for instance, is separated by a space.

In addition to the above extensions, more ALGOL basic symbols are introduced
to ease the conversion problem. These are

library This is used for textual insertion of the required input-output routines, as
explained in the last section

endtext Denotes the end of the suite of programs
endprogram Separates one program and its data from the next

data If a program requires data, this is included after the program text, and is
separated from that text by the data symbol

The idea behind these symbols is that, on detecting them, the conversion pro-
gram can call special procedures to generate control cards automatically.

The sets of programs can be provided in a numerically encoded form of the
ALGOL basic symbols on cards or paper tape. Each basic symbol is assigned a
code between 0 and 259. This code is then represented by <letter><digit>, where
(code + 10)4+i is the number of the letter in the alphabet and the numerical value
of the digit is code-code+10 x 10. The conventional representation of letters and
digits is used for cards using columns 2-71 inclusive. This gives 35 ALGOL basic

symbols per card, and in fact columns 1 and 72 are always blank and columns 73-79
contain a serial number. On paper tape, the ISO UK code is used with an even
parity bit added. Thirty-five ALGOL basic symbols are again punched on each
line in columns 1 to 70. Each line is terminated by CR, 12. No serial numbering
is provided. In practice, fewer cards are used titan for an ordinary representation
(about half), but the paper tape form is slightly longer. The ALGOL basic symbol
code is listed on section [l

A sum check of the individual code values is produced on a separate line after
the endtext symbol. The partly completed line is blank on cards (apart from the
serial number) and is terminated by CR, LF on paper tape. The sum check itself
is six decimal digits and is module 1000000.

A KDF9 ALGOL program to perform the conversion to any local dialect is given
below. This program will require extensive modification to output control cards and
to set up the tables to drive the ALGOL basic symbol conversion.

5 The conversion program

(omitted)

6 Comments on the test programs

It cannot be expected that a compiler will pass every test. Indeed, in some circum-
stances, it is hard to say what ‘pass’ means. A critical part of the tests is therefore
an assessment of the action taken by the compiler and run-time system. Several
tests may violate restrictions in the language imposed by the compiler. Such tests
should nevertheless be run in order to check that the compiler and/or run-time
system correctly detects and fails such programs.

In order to give a single numerical indication of the success of a compiler a scoring
system could be used. In this case, because of the difficulties mentioned above, no
such system is used. However, in order to indicate actions that might reasonably be
taken, the results of running the tests on the Whetstone and Kidsgrove compilers
are given. This is accompanied by a short explanation, the expected output and
comments on what might reasonably be expected.

On a translation failure, the Whetstone compiler produces a line number and ad-
ditional context information on the position of error. In certain cases, an additional
line number is given, for instance on an inconsistent use of an identifier, the two
inconsistent uses are indicated. Execution errors use a retroactive trace (Randall
[20]), but positional information is not given with the version of the compiler used
for these tests. In practice, the retroactive trace is usually adequate. The Kidsgrove
compiler gives positional indication only on simple errors found during the first pass
of the translator. Execution errors do not give positional information either, but
an option exists to give a retroactive trace for procedures and labels. An ALCOR
[2] style post mortem dump is produced but compiler tables are needed to interpret
it. A combination of both systems provides a reasonable environment for testing
and production running, the main defect being that programs containing errors can
translate correctly in Whetstone, but fail giving any positional information with the
Kidsgrove compiler. Cases where no positional information was given or an unusual
action was taken are noted against each test.

Almost all the test programs have been formatted with SOAP [21I]. In some
cases, this has lengthened the text substantially compared with a conventional lay-
out.

7 Possible extensions

Although the 130 tests included in this report exercise most of the important fea-
tures of ALGOL 60, there are some serious omissions which ought to be rectified.
The major areas not tested include:

1. Own variables or arrays in recursive routines

2. Tests for the numerical behaviour of the standard functions sqrt, In, arctan,
exp, sin and cos. This is currently being investigated at NPL.

3. Tests on the completeness of the syntax checking. One should ensure that
every valid delimiter pair occurs in at least one test program

4. Integer labels and unspecified parameters. Since these are not permitted in
the majority of implementations, tests are not so important. Using these
facilities pathological programs can be constructed whose meaning may be
open to several interpretations.

In addition to these specific areas, programs that are known to have failed in
particular systems are of interest, especially when the form of the error is not
illustrated by any of the other tests.

8 Acknowledgements

Many of the test programs have been constructed from or are copies of published
algorithms. Several were also obtained from Mr M Woodger of the Computer Sci-
ence Division in NPL. I should like to thank Mr Woodger, Mr R Scowen and Mr I
D Hill for many suggestions for possible tests.

9 Notes on each test

Test 1

The program checks that integer or real constants which overflow the machine ca-
pability are correctly flagged by the compiler. The overflow of both integer and real
constants should be detected in one compilation attempt.

The Whetstone compiled correctly, detecting the overflow on the integer, but
missing the real number. The Kidsgrove compiler failed to give any error message
owing to an attempt to execute an illegal instruction.

Test 2

Some difficulties arise in ALGOL 60 because the number of significant characters
in an identifier is not defined. If two identifiers differ only after a large number of
characters, then provided the declarations occur in the same block, the error will
be detected. However, if the declarations occur in nested blocks, the program could
be incorrectly translated without comment. Ideally, a compiler should check that
nested declarations do not contain a ‘similar’ identifier of excessive length.

The program illustrates this difficulty with two identifiers of 33 characters long
similar in all but the last character. The program should print 1.0, but almost all
systems will print 2.0 because the two identifiers will not be distinguished. ALGOL
60 permits the implementer to use any algorithm for distinguishing identifiers, but
every system known to the author takes the first few characters. Alternatively
one could use the length in characters, the last few characters in addition. A

hash function of all the characters could be used, but this has the very substantial
disadvantage that the algorithm could not be repeated by hand.

Both KDF9 compilers took the expected action. Whetstone compiled and exe-
cuted the program giving the ‘wrong’ value 2 as only eight characters are significant
in an identifier. The Kidsgrove compiler produced the correct answer 1, since up to
155 characters are significant.

Test 3

Knuth [I3] has pointed out that every label must be in a block, but that a complete
program can be a labelled statement and so is not formally in a block. This program,
which is syntactically correct, could be rejected on semantic grounds by a compiler.
The program is labelled and is not a block, which could cause difficulties with a
compiler.

The program compiles and executes successfully in the Whetstone system. The
Kidsgrove system fails undeclared identifier on the reference to the label. The
original Kidsgrove compiler did not permit labelled programs, but initial labels have
been used at NPL as a method of passing parameters to SOAP [21], the formatting
program. To overcome this error in the Kidsgrove compiler, it was modified to skip
to the first begin, thus ignoring any initial labels.

Test 4

The standard function identifiers can be redeclared for different uses. This program
checks this using such identifiers for initial labels and within the program.

Compiles and executes successfully in both the Whetstone and Kidsgrove sys-
tems. In fact, the test was not formally handled correctly by the original Kidsgrove
compiler as can be seen from the preceding test.

Test 5

An ALGOL program, although it can be labelled, must have a begin because if
it is not a block, it must be a compound statement. The program in this test is
therefore erroneous, although it is virtually identical to test 3.

Fails in both Whetstone and Kidsgrove compilers.

Test 6

A convenient facility that does not exist in ALGOL 60, is to abbreviate if x <y
and y < z then to if x < y < z then. This program checks that such constructions
are rejected by the compiler. A language extension may permit this, but the author
does not know of such a compiler. CPL allows this construction with the obvious
interpretation. Both APL and PL/T allow this syntactic form but the semantics are
different — a real trap.

The Whetstone compiler fails this program with the very explicit message ‘rela-
tion on each side of simple arithmetic expression’. The Kidsgrove compiler, although
failing the program, gives no indication of the position and the message is less help-
ful namely ‘failure in selection matrix, two operators are being compared which are
invalid’.

Test 7

The implementation of call-by-name parameters has many far-reaching consequences.
One difficulty is that the validity of an assignment to a name parameter depends

upon the actual parameter. It is therefore difficult for a compiler to check this, and
so many systems make a dynamic check at run-time. It is not at all clear whether a
program containing an assignment to a name parameter, with an actual parameter
inconsistent with this, can be legitimately rejected at compile-time. It may well be
that the assignment is not executed when the actual parameter is not a variable.
The author’s view is that the check should be dynamic, but if an actual parameter
is inconsistent with this, the compiler should print a warning message (and compile
the program).

Both KDF9 compilers translate the program and fail it on execution. The
Whetstone compiler error message ‘integer assigned to real actual parameter called
by name’ is not quite correct. The Kidsgrove compiler error message is less precise
‘invalid assignment to name parameter’.

Test 8

This program contains a trivial syntax error, a declaration follows a statement. It
should fail to compile.

Fails to compile in both systems with the messages ‘declaration follows state-
ment’ (Whetstone) and ‘declarator not in block head or specifier not in procedure
head’ (Kidsgrove).

Test 9

The removal of comments from an ALGOL program is not as straightforward as
one might expect. The reason for this is that comments are of three types, following
comment, following end and a parameter comment. All of these forms have dif-
ferent constraints, and the context in which they appear requires a nearly complete
syntax check. The next six programs illustrate these problems. This test ought to
compile although it contains some very odd comments. There is a grave danger that
a statement could get lost in an end comment, so a compiler should give a warning
if a delimiter appears in an end comment (as in this case). Note that strings and
comments are unconstrained in their use of bracketing pairs (i.e. 0, [], begin end,
for do). The program contains one nested string which could be removed if they
were not allowed in an implementation.

Compiles and executes successfully with the Whetstone system, but prints a
warning that st, a and b are declared but not used, and that an end comment
contains a delimiter. Compiles and executes without comment with the Kidsgrove
compiler.

Test 10

This is also a valid program containing odd comments. If one ‘comment’ were
removed, then it is possible that the program could fail by having too few parameters
to a procedure call. Compiles and executes successfully with both KDF9 systems
(producing no output), but the Whetstone compiler gives a warning of identifiers
declared but not used.

Test 11

This program is invalid. A parameter-like comment appears where a comma is
expected but not the comma between procedure parameters. Thus if a compiler
replaced any parameter-like comment by a comma before doing the rest of the
syntax analysis, this program could compile.

Fails to translate in Whetstone, with the message ‘misused) other than in
expression’. Fails to translate in Kidsgrove with the message ‘various syntax errors
in block or procedure head’. Both compilers pinpoint the error accurately.

Test 12

A parameter comment must have a colon after the final letter. This program is
invalid because this colon is omitted both in a procedure declaration and a procedure
call.

The Whetstone compiler detects both errors with the message ‘illegal parameter
comment’, but does not adequately recover to find any further errors. The Kidsgrove
compiler fails to compile the program, nor does it produce any diagnostic.

Test 13

The syntax of comments following the symbol comment prohibits labelled com-
ments. This program tests for this point, and should therefore fail to compile.

Fail ‘comment does not follow begin or;” in Whetstone. The Kidsgrove compiler
executed an invalid instruction without producing any error message. It is known
that the compiler accepts labelled comments.

Test 14

Parameter comments can only contain letters and digits. A parameter comment
in this program contains comment, and is therefore invalid. It is not clear if this
program should be rejected when a reserved word representation is used, since the
basic symbol comment will only contain letters.

Fails to translate in Whetstone with three error messages ‘illegal parameter
comment’ twice and then ‘end of file inside program’. The Kidsgrove compiler
executed an invalid instruction without printing an error message.

Test 15

Basically similar to test 10, this contains strings and paranieter comments in a form
that could confuse a poor syntax analyser. This program is invalid, unlike test 10.

Fails to translate in Whetstone, with two error messages ‘illegal parameter de-
limiter after string’, and ‘closing string quote misplaced’. Fails to translate in
Kidsgrove with the message ‘bracket mismatch’.

Test 16

A valid program, checking that nested strings are acceptable to the compiler.
Compiles and executes successfully with both the Whetstone and Kidsgrove
systems (no output is produced).

Test 17

Checks that identifiers can be used that are spelt the same way as basic symbols.
This test will fail in any reserved word representation system.

Compiles and executes successfully with both the Whetstone and Kidsgrove
systems (no output is produced).

Test 18

This program checks that redeclaration of ‘similar’ identifiers within the same block
fails to translate. The identifiers, while formally distinct, are the same in the first
47 characters. The position of the error detected by the compiler should indicate
the number of significant characters in an identifier. Also checks that spaces are
allowed in identifiers and constants.

Fails to translate ‘redeclaration of an identifier’ because only the first eight
characters are significant in Whetstone. Compiles and executes successfully (no
output) in Kidsgrove because 155 characters are significant in an identifier.

Test 19

This program contains a procedure call in which the dimension of the formal and
actual array parameters are different. This is invalid ALGOL 60, but since array
specifications do not give the dimension, it is difficult for the compiler to check.

The Whetstone system compiles the program, but it fails in execution with the
message ‘incorrect number of subscripts to formal array’. The Kidsgrove ALGOL
compiler also compiles it, but fails on execution with the message ‘overflow set
on exit from procedure sum 2’. This has been produced because the core-store is
initially set to an undefined floating point value which is likely to cause overflow.
The invalid access to the array elements evidently fetches one of these words causing
overflow. The error message is therefore very misleading, as the system makes no
explicit check for this form of error.

Test 20

One difficulty with ALGOL 60 is that the dimension of a formal array parameter
cannot be specified. Where necessary, the compiler must deduce this from the
source text. However, if a formal array parameter is only handed on to a further
procedure, the dimension may not be determinable without quite complex analysis.
It is not clear from the Report if a program which uses an array parameter with
different dimensions can be regarded as correct.

These problems are illustrated by this and the following test. Both programs
attempt by different means to provide a procedure to add up the element of two
arrays of one and two dimensions. This test is the least dubious, as each procedure
uses the formal array consistently. A compiler could, with good reason, refuse
to compile the program on the grounds that the actual arrays submitted to the
procedure ‘sum’ vary in dimension. Certainly a compiler should print a warning
message and insert additional run-time checking code.

Compiles and executes on both KDF9 systems, printing the two numbers 14 and
60.

Test 21

Similar program to test 20, except that within one procedure a formal array param-
eter is used with a variable number of subscripts. The use of each array is correct,
but the compiler cannot check this at compile time. Since a run-time check would
have to be made at each array access, to accept (and validate) programs like this,
the author’s view is that this program should not compile.

Fails to compile with the Whetstone system giving the message ‘wrong number of
subscripts or parameters’. Compiles and executes ‘successfully’ with the Kidsgrove
compiler printing the two numbers 14 and 60; however this is only achieved at the
cost of performing no parameter checking.

10

Test 22

The implementation of label parameters in ALGOL 60 is quite complex because of
dynamic storage allocation. The corresponding goto must not only jump to the
correct machine address, but it must also restore the correct activation of the block
enclosing the label.

These difficulties are illustrated with this example involving a recursive proce-
dure (to get several activations of the label ‘exit’). The program prints the numbers
1 to 10, and ran successfully with both the KDF9 compilers.

Test 23

A further difficulty with label parameters is caused by the fact that they can appear
in the value list. The corresponding actual parameter to a label by name must not
be evaluated until the goto is reached. Some of these points are illustrated in this
example, which is constructed so as to loop or fail if the labels are not evaluated at
the right point.

Whetstone compiler translated and executed the program correctly, printing the
two numbers 1 and 2. The Kidsgrove compiler failed to translate the program with
the message ‘monadic (operand 1) not available, machine or real array identifier used
as actual parameter where formal was real by value’. This message is completely
misleading and, as no positional information is given, it is virtually useless. The
error is apparently caused by having a switch element as the actual parameter to a
label by value.

Test 24

Array parameters can also be called by value, in which case, a completely new copy
of the array must be made. This mechanism causes obvious implementation difficul-
ties and is sometimes excluded by a compiler. In this test, a further complication
arises because the actual and formal arrays are of different types. Hence a type
conversion is required. If value arrays are allowed, but the type conversion is not,
then the integer from the actual array declaration can be omitted.

Compiles and executes correctly with both KDF9 compilers, printing the value
45. Value arrays are not important, especially with type conversion, so failing this
test is not serious.

Test 25

The syntax of real numbers is surprisingly complex, and all fifteen different forms
are used in this program. As equality of real numbers cannot be guaranteed, the
numbers are merely printed. The program prints 43 numbers, the output of which
is obvious from the program text.

The program also checks that numbers with excessive zeros immediately after a
decimal point are not converted with loss of accuracy. Similarly 7 is expressed with
excessive precision, but should be printed to the full accuracy of the machine.

Compiles and executes correctly in both the Whetstone and Kidsgrove systems.
The round-off characteristics of the two implementations is different (see test 55),
and so the actual output is marginally different, but not excessively so.

Test 26

Although some ALGOL experts would disagree, there appears to be three levels of
nomenclature in a procedure. These are the procedure identifier (if a function) and
the parameters, labels to the procedure body, and locals to the procedure body.

11

This program contains three clashing identifiers at each level. The purist may
expect such a program to compile, but the author’s view is that it should not, or
at least a warning should be produced.

The program fails to compile in Whetstone with the message ‘redeclaration of an
identifier’. Compiles and executes (no output) without comment with the Kidsgrove
compiler.

Test 27

This test was constructed by P Lucas to demonstrate an error in environment
control in an implementation of PL/I. It was communicated to the author by Dr E
Satterthwaite. Formal procedures, like labels, involve an activation level apart from
a machine-code address. The purpose of this test is to show that the activation
level is handled correctly.

The program compiles and executes correctly with the Whetstone system, print-
ing the numbers 2, 1, 2, 2. The program fails to translate with the Kidsgrove com-
piler, with no intelligible error message. Investigation showed that this was caused
by the compiler attempting (unsuccessfully) to discover the parameter specification
of formal procedure parameters. The chain of formal procedure calls involved a
loop, so the compiler itself looped attempting to find an actual procedure giving
the specification details. Successful compilation and execution of programs that are
as complex as this is not of great practical significance, but failure may indicate
more serious defects in the compiler. The Kidsgrove compiler’s performance cannot
be regarded as satisfactory.

Test 28

This program is another test of the activation levels of formal procedures. The
original version was from Dr Satterthwaite in ALGOL W. The coding In ALGOL
60 could use labels (test 30) or procedures as in this test.

The program compiled and executed successfully with the Whetstone system,
printing the six numbers 4, 5, 4, 5, 6, 7. The Kidsgrove compiler compiled the
program but executed it incorrectly printing the 12 numbers 2, 3, 4, 5, 0, 1, 2,
3,4, 5,6, 7. This was traced to the fact that the compiler does not maintain an
activation level with formal procedures — only the machine-code address. This is a
logical error in the compiler, but it is not likely to have a significantly detrimental
effect in most applications programs.

Test 29

This program is a modified version of test 27. Some compilers, with good reason,
demand that the parameter specification of each actual procedure given as a formal
parameter should be identical. Test 27 violates this requirement because it has a
formal parameter g in p which may require two parameters or none, depending on
the actual procedure parameter. The program should therefore compile and execute
as for test 27, as is the case in the Whetstone system. The Kidsgrove compiler failed
in the same manner as test 27, that is, it looped.

Test 30

This program is a logically similar test to number 28, using label parameters instead
of procedure parameters.

12

The program compiled and executed successfully with both KDF9 systems.
Hence the Kidsgrove compiler handles the environment of labels correctly, but not
that of formal procedures.

Test 31

This is an invalid program and should fail to compile. An if may not follow a then,
even in those cases where the context, such as a conditional expression, does not
necessarily make it unambiguous.

Whetstone fails ‘if misused’ twice. Kidsgrove compiler fails ‘conditional expres-
sion with no else part’, with no indication of the source text position.

Test 32

There are substantial difficulties in implementing name parameters in ALGOL,
especially when assignments are made to the parameter. This is because the validity
of the assignment can only really be checked at run-time. A further difficulty arises
if the formal and actual parameters are not of the same type but are both integer
or real. In this case, a dynamic check must be made on assignment to see if a
type conversion is necessary. Neither of the KDF9 compilers allows for this type
changing on name assignment, but both compile the program. Some compilers
reject this program at compile time because with the first call of ass the second
actual parameter is -1 which cannot be assigned. However, although an assignment
does appear in the body of the procedure, it is not executed. The program should
output 8 and 16.0.

Results: Whetstone compiler fails ‘real number assigned to an integer actual
parameter call by name’; on the last call of ass. The Kidsgrove compiler fails at the
same point with the message ‘invalid actual parameter on name assignment’.

In the author’s view to fail at either compile time or run-time as above, or to
fail to execute correctly are all reasonable. The important point is that if it does
not execute correctly a reasonable diagnostic should be produced.

Tests 33-51

The 19 tests from test 33 to 51 have been generated automatically using the ML/I
system [3]. Their purpose is to test that programs which are complicated in some
sense do not overflow any compiler tables. They have been chosen by taking every
syntactic list which appears in the ALGOL report (defined by simple recursion).
The test consists of a simple program which contains this list which is about three
times longer than might ordinarily be expected in programs of a few pages in length.
Thus, except for the one long list, the programs are very simple.

Test 33

The nesting of procedures can cause implementation difficulties. This program
contains six procedures nested within each other. There is no output.

Both Whetstone and Kidsgrove compilers apparently compile and execute this
successfully.

Test 34

Contains 15 nested blocks. There is no output. It is compiled and executed correctly
in both Whetstone and Kidsgrove.

13

Test 35

Program declares 300 real variables in one list. They are all initialised to 1.0,
and their sum is printed out. Compiles and executes correctly in Whetstone and
Kidsgrove. Prints the number 300.

Test 36

Program declares 60 1-dimensional arrays of ten elements each in one array segment.
The first element of each array is set to 1.0 and their sum is printed.

Compiles and executes successfully in Whetstone. Fails in Kidsgrove at compile
time with the error message ‘too many dimensions in array or too many arrays in
segment’. The manual states that not more than 31 arrays can be declared in a
segment. This is not a severe restriction, as they can easily be broken up.

Test 37

The program contains 12 nested for loops, and should print the number 8190. Com-
piles in Whetstone ALGOL, but fails due to lack of time after 3 minutes execution.
Compiles and executes successfully in Kidsgrove (26 seconds to compile, 3 seconds
to execute).

Test 38

The program contains 24 nested conditional statements, and should print the num-
ber 24. Compiles and executes successfully with both the Kidsgrove and Whetstone
systems.

Test 39

This contains a conditional expression nested nine deep, and should print the num-
ber 2. Compiles and executes successfully in both the Whetstone and Kidsgrove
systems.

Test 40

Tests that switches if length 300 are allowed. The program also executes a to each
label of the switch, and should print the number 301.

The Whetstone compiler translates the program in 25 seconds, and takes 14
seconds to execute the program successfully.

The Kidsgrove compiler fails to translate the program because of a stated re-
striction that switches are limited to 64 elements. In the authors opinion this is an
annoying but not a very severe restriction (longer switches can be broken into two
or more).

Test 41

Contains a function with 60 integer value parameters. Prints the number 60. Com-
piles and executes successfully with Whetstone and Kidsgrove compilers.

Test 42

This test is to check the availability of arrays of large dimension. An array of 12
dimensions is used containing 2'2 elements. The first element is initialised and
printed (value is 1.0).

14

Compiles and executes successfully with the Whetstone and Kidsgrove compilers.

Test 43

Contains an expression nested 15 deep. The nesting is straightforward but of such
a form that special action would be necessary to produce good code on a left to
right parse. With the Kidsgrove compiler, this checks that possible overflow of the
KDF9 nesting store is handled correctly.

Prints the number 15. Compiles and executes correctly with both the Whetstone
and Kidegrove systems.

Test 44

Contains a nested expression 15 deep which is rather more complex than the last
one. Prints the real number 4 — 3/21% = 3.99981689.....
Translates and executes successfully in both Whetstone and Kidsgrove systems.

Test 45

Contains a nested call (9 deep) of the standard function sgrt. Prints the number
1.038118809....
Translates and executes successfully in both Whetstone and Kidsgrove systems.

Test 46

Contains a nested designational expression of depth 6. Produces no output. Trans-
lates and executes successfully in both Whetstone and Kidsgrove systems.

Test 47

Program consists of six labelled dummy statements only. Translates and executes
successfully with the Whetstone system. Although the program fails to translate
with the Kidsgrove compiler, no error message is produced. This is thought to be
because the program contains no executable code (as for test 13).

Test 48

Program contains a series of compound statements nested 24 deep. Prints the
number 24.

Translates and executes successfully with both the Whetstone and Kidsgrove
systems.

Test 49

Contains an assignment statement with 15 elements on the left hand side. Prints
the number 15.

Translates and executes successfully with both the Whetstone and Kidsgrove
systems.

Test 50

Contains a for loop with 60 for test elements. Prints the number 1830. Translates
and executes successfully with both the Whetstone and Kidsgrove systems.

15

Test 51

Declares in one list 60 arrays of ten elements with separate bounds. Initializes
the first element of each array and prints their sum (60). Translates and executes
successfully with both Whetstone and Kidsgrove systems.

Test 52

An expression can appear in a number of places in the syntax of ALGOL. The
expression can be arithmetic, boolean or designational. A complicated expression
of all these types has been constructed and inserted in examples of all the valid
places. For this purpose ML/I was used (indeed, it would be tedious to do it
without such a tool). Prints the number 6.8, but could be subject to substantial
rounding errorsﬂ

Compiles and executes successfully with Whetstone in two seconds. Fails to
compile in Kidsgrove with the error message ‘generator nest with more than one
result (conditional expression)’. Since no positional indication is given, the com-
piler cannot be regarded as satisfactory. Closer inspection reveals that the error
is probably due to having a complicated expression in the step part of a for list
element.

Test 53

Tests the integer divide operator against the definition given in the ALGOL report
using sign and entier. No output is produced if agreement is found with 20 tests.
However, the ALGOL definition relies upon the fact that, for example, entier (2/1)
is 2. Rounding errors could result in output being produced although the integer
divide is calculated correctly. It would have been much better if integer divide had
been defined without the use of real operations. The output allows a hand check to
be made.

Compiles and executes successfully with both Whetstone and Kidsgrove systems.

Test 54

Tests sign, entier and abs, all of which should not involve any rounding errors. Real
equality is used with abs, which could be criticised on the grounds that this is not
well defined. However it is hard to believe in this case that equality should not be
found. As with test 53, entier (100.0) may be correctly implemented and yet, as
above not equal to 100.

Compiles and executes successfully with both Whetstone and Kidsgrove systems.

Test 55

This is quite a long program, whose object is to test the consistency of different
methods for obtaining a rational constant. The three methods are direct calculation
using one real division, using an explicit constant in the program, and reading the
number off the data tape. The three real quantities obtained can be compared for
equality or the form of inequality. In the author’s view, the constant in the program
and that on the data tape should produce identical results since the same routine
should be used. The calculated value could be different, since it will depend upon
the floating point division hardware. In all cases there should be no consistent bias,
as this would indicate a lack of care in dealing with round-off conditions.

1 As with the other examples, the program was then formatted with SOAP [2I]. This revealed
an error in the line justification part of SOAP.

16

The program works by using 399 rational numbers of the form d.dd (d.dd =
0.01 to 1.00), 10d.dd (100.01 to 101.00), 1000d.dd (10000.01 to 10001.00) and 0.<20
digits> (value = 1/(i xi—1),7 = 2 to 100). The last case involves rational fractions
specified to 20 decimal digits, which should be adequate for up to 64-bit real arith-
metic (the fractions are correctly rounded as decimals). The test using the last 99
numbers is substantially more severe since it involves reading more digits than the
precision of the machine allows.

The program counts each form of inequality, and prints this out after each block
of tests, producing 36 numbers in all.

The results are best summarised by a table. Whetstone ALGOL completed the
program in 6 seconds and executed in 28 seconds. The final matrix of inequalities
was

operator (read,calculated), (calculated,constant), (constant,read)

< 182 0 1
= 216 372 233
> 1 27 165

There is therefore a consistant bias except for one number, with constan <
calculated < read. Strict inequality occurs 41% and 7% of the time respectively.
On this basis, the routine in the Whetstone compiler for reading constants must be
regarded as suspect. The Kidsgrove system uses the same routine for reading data
and so gives the same 7% deviation from the calculated values as above. The full
matrix is

operator (read,calculated), (calculated,constant), (constant,read)

< 30 0 0
= 369 372 396
> 0 27 3

Hence there is a one per cent deviation between the calculated and constant
values. The program took 1 minute 6 seconds to compile and 8 seconds to execute.

In order to see if another input-output package would produce better answers,
the program was converted and run in Babel [22]. The read routine is common
to the compiler and run-time system and is known to work double length. With
360 numbers (fewer due to a compiler limitation) only on inequality was found.This
shows that good results are attainable with the KDF9 hardware.

Further tests should be made to measure the magnitude of the deviations, but
interpretation of the results is likely to be very machine dependent.

Test 56

The operator 1 is very difficult to implement correctly because it dynamic type
checking. Most systems redefine the operator so as to avoid this. The other related
difficulty is that there are 18 different cases depending upon the type and sign of
the assignments. Ten of these are valid and eight are invalid. This test program
attempts all the ten valid cases and one invalid one.

The program rises real equality against the defining formula given in the Report.
It can be argued that equality is not to be expected because, unlike integer divide,
the operator is not defined by an ALGOL algorithm (and so any algorithm with
different round-off properties could be used). Nevertheless, failure of the equality
test does indicate that further analysis should be done.

17

Tho test compiles and fails to execute in both systems on the final computation
of (-2.0)1 3.0. Note that this final test could give the answer -8 if the real nature
of the arguments is ignored. Whetstone ALGOL prints the value of the arguments
on failure, and the Kidsgrove system produces a stores print which indirectly gives
the value of the arguments.

Test 57

Attempts to calculate 0.01 0. Variables are used so that the calculation of constant
expressions by the compiler is not used. Ideally this should be checked as well.

In both systems the program compiles and fails to execute in the manner required
by the Report.

Test 58

Attempts to calculate 0 1 0, which is invalid. Fails on execution in both systems.

Test 59

Attempts to calculate 0.0 7(-1.0). Fails on execution in both systems, but the post
mortem print in the Kidsgrove system also failed which has since been corrected.

Test 60
As for test 59 with 0 1(-1.0). Results as for test 59.

Test 61
As for test 59 with (-2) 1 3.2. Results as for test 59.

Test 62

Test to check that 0 1 (-2) fails on execution. This fails ‘overflow in 1’ in the
Whetstone system. Produces the answer 0 with no error indication in the Kidsgrove
system. This was due to clearing the hardware overflow flag. This error has now
been corrected.

Test 63
As for test 62 with 0.0 1 (-2).

Test 64

It is not clear from the ALGOL Report if a conditional expression can have a
different type depending on the result of the condition. In this test, the two types
are integer and real, but when a real type is produced it must fail because integer
divide can only have integer arguments. In the author’s opinion this test should fail
at compile time.

Both the Whetstone and Kidsgrove systems compile the test and execute the
condition successfully if an integer value is produced (printing 0.0). The Whetstone
system performs a dynamic type check. The Kidsgrove compiler always produces
a floating point answer from such conditions, but if the value is not integral, the
integer divide operation will fail. This technique is not formally correct, since the
expression (if true then 1.0 else 2) + 6 will not fail. Nevertheless it is probably
as near to the Report as can be managed.

18

Test 65

The type of the result <integer> 1 <integer> depends upon the sign of the expo-
nent. Dynamic type checks are therefore required if the Report is followed in detail.
This test calculates 2 1 3 + 3, which should probably be rejected at compile time.

Both the Whetstone and Kidsgrove compilers accept this, and the methods used
follow that noted in test 64. The value printed should be 2.

Test 66

Tests that the precedence of the integer operators is apparently correct. Should
print the number 25. Also contains a test similar to number 65, 50 it could fail just
because of this.

Compiles and executes successfully with both systems.

Test 67

This test is similar to number 65 and should fail to execute. Compiles but fails to
execute in both Whetstone and Kidsgrove.

Test 68

There is a difficulty in ALGOL 60 concerning switches and for loops. Jumps into
the middle of a for loop are not allowed although the for loop statement does not
necessarily constitute a block. Apart from improving program clarity, there are
good practical reasons for this, namely that the control variable may be undefined,
and the action with multiple for list elements will be indeterminate.

Since a switch list may involve several labels, any of which