
Some validation tests for an Algol 60 compiler

B A Wichmann,
National Physical Laboratory,

Teddington, Middlesex, TW11 0LW, UK

NPL Report NAC33, 1973 pp0-66

Abstract

This report contains details of over 100 Algol 60 test programs available
from NPL which can be used to validate a compiler. Interpreting the results
of the tests requires a good knowledge of Algol 60.

Contents

1 Introduction 1

2 The test system 2

3 Programming conventions 2

4 The automatic preparation system 4

5 The conversion program 5

6 Comments on the test programs 5

7 Possible extensions 6

8 Acknowledgements 6

9 Notes on each test 6

10 Test summary 32

11 The ALGOL Basic symbol table 36

1 Introduction

ALGOL 60 is comparatively well defined. One advantage of this is that it is possible
to devise test programs independently of the compiler. Such tests cannot, of course,
be expected to find all the errors in a compiler. The only possible way to perform a
complete check is to analyse the logic of the compiler which represents an order of
magnitude of more effort than writing the compiler in the first place, and so cannot
be reasonably attempted in the existing state of the art. Hopefully future work on
proving the correctness of algorithms could be extended to include an ALGOL 60
compiler. For a summary of existing research into this area see London [16] and
Lucas [17].

1

Accepting that tests cannot be complete does not mean that a collection of tests
cannot be useful. An attempt has been made here to collect tests which cover the
major difficulties in the translation of ALGOL 60. At best, these tests could reveal
all the known errors in an implementation, and at worst, such tests demonstrate
that large parts of the compiler apparently work.

All the tests have been checked by executing them with the two compilers that
are available on KDF9. Comments are included here on how the compilers handled
the tests. It is to be hoped that the tests will be run on several systems to enable
detailed comparisons to be made.

Many of the tests are of a controversial nature. In some cases, an implementor
could reasonably state that such programs are not valid ALGOL 60. Even so, the
compiler should deal intelligently with such programs by generating good diagnostic
information. In many other cases, the test programs can be expected to violate a
stated restriction of a compiler, but again, an intelligent message is to be expected.

The test system incorporates a number of special programs written by R S
Scowen, I D Hill [7] and M Woodger. Hopefully it will be possible to add further
tests which are known to have failed in at least one system.

The amount of effort required to run these tests depends upon the experience
of the programmer, the ease of access to the computer and the facilities provided.
Of crucial importance is the ease with which ten or so tests can be run one after
another. As over half the tests are liable to fail to translate, it is necessary to have a
large number of individual programs. As a rough estimate one to two man-months
should be sufficient to run all the tests given reasonable machine access and the
ability to batch several tests together. Testing a new release of a compiler should
be much simpler, involving only a few days work.

2 The test system

It is very important that no punching errors should be introduced in the preparation
of the tests. For this reason, the tests must be formed automatically from cards or
paper tape supplied in a standard format. The formation process can be used to
generate control cards, library requests and other data necessary for execution of
the programs. Since there are over 100 tests, it is obviously important that batches
of tests should be handled automatically by the system. To assist the automatic
handling, the programs use a very simple input-output system, and do not use any
input data except where strictly necessary.

The programs themselves are not reproduced here, since some of them are very
long, and in any case, it would encourage hand conversion. The conversion itself is
merely a transcription of an encoding of the ALGOL basic symbols into the local
hardware representation, To ensure that this is adequate, various programming
conventions are adopted which are known to be necessary because of the nature of
certain implementations.

3 Programming conventions

The following restrictions are observed, except in these tests whose object is to
investigate the nature of the restriction. The system having the particular limitation
is noted in brackets.

1. No spaces in identifiers (Univac 1108)

2. No identifiers that could be reserved words (Atlas (cards) Univac 1108, B5500)

3. No spaces in constants (Univac 1108)

2

4. No recursion (IFIP)

5. No type-changing on a call-by-name assignment (KDF9)

6. No label parameter to a function or goto out of a function (B5500)

7. Regarding a for loop as a block should not invalidate the program (KDF9,
Whetstone)

8. No strings (B5500)

9. No parameter comments (B5500)

10. No upper case alphabetic characters (B5500, CDC6000, Univac 1103, etc)

11. Only six significant characters in an identifier (IFIP)

12. Not more than 32 characters in an identifier

13. No use before declaration (Elliott, B5500)

14. No integer labels (Atlas, 1900, KDF9, B5500, etc)

15. No side effects on function calls (ALCOR)

These conventions are the main reason why it has not been possible to use many
existing test programs.

A small number of procedures are used for input-output and finding the amount
of processor time used by the program. These procedures are:

real procedure cputime;
comment procedure gives the processor time taken by the

program in arbitrary (but known) units. Microsecouds
are preferred;
<body>;

procedure outreal (channel, x);
value channel, x;
integer channel;
real x;
comment print x to full accuracy, see IFIP

input-output procedures, CACM Vol 7 Mo 10,
pp 628-630. The ACM convention is adopted
on channel numbers. In fact channel is
always 1;
<body>;

procedure inreal (channel, x);
value channel;
integer channel;
real x;
comment IFIP procedure as above. Assigns to x the

next number on the input tape. Channel is
always 2;
<body>;

Every test program requiring some of these procedures or the ALGOL standard
functions will have the following in place of their declaration

3

library <n>;

where n is a number, which indicates the required procedures by its binary
representation

• n = 20 outreal

• n = 21 cputime

• n = 22 standard functions

• n = 23 inreal

so that library 5; means that the standard functions and outreal are required.
The user can adopt two methods of handling these procedures. The library

symbol can be replaced by the text of the procedures required. Alternatively, a
macrogenerator or a good editor (if available) can be used to alter the calls of
outreal, inreal and cputime to those of routines already available within the system.

The programs use these procedures only when necessary. The output produced
is very small, as the majority of the tests are self-checking. Only two programs use
inreal, the purpose of which is to check that input of real numbers does not have a
consistent bias.

4 The automatic preparation system

Each ALGOL test program, and the data where relevant, is considered to be a
sequence of ALGOL basic symbols. In order to allow convenient output without the
use of an automatic formatting program, the ALGOL basic symbols are extended
to include: space, tab and newline.

The tabulate character is used to indent the begin-end structure of the program
and corresponds to eight spaces. Fewer spaces could be used with advantage if the
representation of the basic symbols in terms of characters is more than that of the
corresponding words. If a reserved word system is being used, then the conversion
must ensure that real array, for instance, is separated by a space.

In addition to the above extensions, more ALGOL basic symbols are introduced
to ease the conversion problem. These are

library This is used for textual insertion of the required input-output routines, as
explained in the last section

endtext Denotes the end of the suite of programs

endprogram Separates one program and its data from the next

data If a program requires data, this is included after the program text, and is
separated from that text by the data symbol

The idea behind these symbols is that, on detecting them, the conversion pro-
gram can call special procedures to generate control cards automatically.

The sets of programs can be provided in a numerically encoded form of the
ALGOL basic symbols on cards or paper tape. Each basic symbol is assigned a
code between 0 and 259. This code is then represented by <letter><digit>, where
(code ÷ 10)+i is the number of the letter in the alphabet and the numerical value
of the digit is code-code÷10 × 10. The conventional representation of letters and
digits is used for cards using columns 2-71 inclusive. This gives 35 ALGOL basic

4

symbols per card, and in fact columns 1 and 72 are always blank and columns 73-79
contain a serial number. On paper tape, the ISO UK code is used with an even
parity bit added. Thirty-five ALGOL basic symbols are again punched on each
line in columns 1 to 70. Each line is terminated by CR, 12. No serial numbering
is provided. In practice, fewer cards are used titan for an ordinary representation
(about half), but the paper tape form is slightly longer. The ALGOL basic symbol
code is listed on section 11.

A sum check of the individual code values is produced on a separate line after
the endtext symbol. The partly completed line is blank on cards (apart from the
serial number) and is terminated by CR, LF on paper tape. The sum check itself
is six decimal digits and is module 1000000.

A KDF9 ALGOL program to perform the conversion to any local dialect is given
below. This program will require extensive modification to output control cards and
to set up the tables to drive the ALGOL basic symbol conversion.

5 The conversion program

(omitted)

6 Comments on the test programs

It cannot be expected that a compiler will pass every test. Indeed, in some circum-
stances, it is hard to say what ‘pass’ means. A critical part of the tests is therefore
an assessment of the action taken by the compiler and run-time system. Several
tests may violate restrictions in the language imposed by the compiler. Such tests
should nevertheless be run in order to check that the compiler and/or run-time
system correctly detects and fails such programs.

In order to give a single numerical indication of the success of a compiler a scoring
system could be used. In this case, because of the difficulties mentioned above, no
such system is used. However, in order to indicate actions that might reasonably be
taken, the results of running the tests on the Whetstone and Kidsgrove compilers
are given. This is accompanied by a short explanation, the expected output and
comments on what might reasonably be expected.

On a translation failure, the Whetstone compiler produces a line number and ad-
ditional context information on the position of error. In certain cases, an additional
line number is given, for instance on an inconsistent use of an identifier, the two
inconsistent uses are indicated. Execution errors use a retroactive trace (Randall
[20]), but positional information is not given with the version of the compiler used
for these tests. In practice, the retroactive trace is usually adequate. The Kidsgrove
compiler gives positional indication only on simple errors found during the first pass
of the translator. Execution errors do not give positional information either, but
an option exists to give a retroactive trace for procedures and labels. An ALCOR
[2] style post mortem dump is produced but compiler tables are needed to interpret
it. A combination of both systems provides a reasonable environment for testing
and production running, the main defect being that programs containing errors can
translate correctly in Whetstone, but fail giving any positional information with the
Kidsgrove compiler. Cases where no positional information was given or an unusual
action was taken are noted against each test.

Almost all the test programs have been formatted with SOAP [21]. In some
cases, this has lengthened the text substantially compared with a conventional lay-
out.

5

7 Possible extensions

Although the 130 tests included in this report exercise most of the important fea-
tures of ALGOL 60, there are some serious omissions which ought to be rectified.
The major areas not tested include:

1. Own variables or arrays in recursive routines

2. Tests for the numerical behaviour of the standard functions sqrt, ln, arctan,
exp, sin and cos. This is currently being investigated at NPL.

3. Tests on the completeness of the syntax checking. One should ensure that
every valid delimiter pair occurs in at least one test program

4. Integer labels and unspecified parameters. Since these are not permitted in
the majority of implementations, tests are not so important. Using these
facilities pathological programs can be constructed whose meaning may be
open to several interpretations.

In addition to these specific areas, programs that are known to have failed in
particular systems are of interest, especially when the form of the error is not
illustrated by any of the other tests.

8 Acknowledgements

Many of the test programs have been constructed from or are copies of published
algorithms. Several were also obtained from Mr M Woodger of the Computer Sci-
ence Division in NPL. I should like to thank Mr Woodger, Mr R Scowen and Mr I
D Hill for many suggestions for possible tests.

9 Notes on each test

Test 1

The program checks that integer or real constants which overflow the machine ca-
pability are correctly flagged by the compiler. The overflow of both integer and real
constants should be detected in one compilation attempt.

The Whetstone compiled correctly, detecting the overflow on the integer, but
missing the real number. The Kidsgrove compiler failed to give any error message
owing to an attempt to execute an illegal instruction.

Test 2

Some difficulties arise in ALGOL 60 because the number of significant characters
in an identifier is not defined. If two identifiers differ only after a large number of
characters, then provided the declarations occur in the same block, the error will
be detected. However, if the declarations occur in nested blocks, the program could
be incorrectly translated without comment. Ideally, a compiler should check that
nested declarations do not contain a ‘similar’ identifier of excessive length.

The program illustrates this difficulty with two identifiers of 33 characters long
similar in all but the last character. The program should print 1.0, but almost all
systems will print 2.0 because the two identifiers will not be distinguished. ALGOL
60 permits the implementer to use any algorithm for distinguishing identifiers, but
every system known to the author takes the first few characters. Alternatively
one could use the length in characters, the last few characters in addition. A

6

hash function of all the characters could be used, but this has the very substantial
disadvantage that the algorithm could not be repeated by hand.

Both KDF9 compilers took the expected action. Whetstone compiled and exe-
cuted the program giving the ‘wrong’ value 2 as only eight characters are significant
in an identifier. The Kidsgrove compiler produced the correct answer 1, since up to
155 characters are significant.

Test 3

Knuth [13] has pointed out that every label must be in a block, but that a complete
program can be a labelled statement and so is not formally in a block. This program,
which is syntactically correct, could be rejected on semantic grounds by a compiler.
The program is labelled and is not a block, which could cause difficulties with a
compiler.

The program compiles and executes successfully in the Whetstone system. The
Kidsgrove system fails undeclared identifier on the reference to the label. The
original Kidsgrove compiler did not permit labelled programs, but initial labels have
been used at NPL as a method of passing parameters to SOAP [21], the formatting
program. To overcome this error in the Kidsgrove compiler, it was modified to skip
to the first begin, thus ignoring any initial labels.

Test 4

The standard function identifiers can be redeclared for different uses. This program
checks this using such identifiers for initial labels and within the program.

Compiles and executes successfully in both the Whetstone and Kidsgrove sys-
tems. In fact, the test was not formally handled correctly by the original Kidsgrove
compiler as can be seen from the preceding test.

Test 5

An ALGOL program, although it can be labelled, must have a begin because if
it is not a block, it must be a compound statement. The program in this test is
therefore erroneous, although it is virtually identical to test 3.

Fails in both Whetstone and Kidsgrove compilers.

Test 6

A convenient facility that does not exist in ALGOL 60, is to abbreviate if x < y
and y < z then to if x < y < z then. This program checks that such constructions
are rejected by the compiler. A language extension may permit this, but the author
does not know of such a compiler. CPL allows this construction with the obvious
interpretation. Both APL and PL/I allow this syntactic form but the semantics are
different — a real trap.

The Whetstone compiler fails this program with the very explicit message ‘rela-
tion on each side of simple arithmetic expression’. The Kidsgrove compiler, although
failing the program, gives no indication of the position and the message is less help-
ful namely ‘failure in selection matrix, two operators are being compared which are
invalid’.

Test 7

The implementation of call-by-name parameters has many far-reaching consequences.
One difficulty is that the validity of an assignment to a name parameter depends

7

upon the actual parameter. It is therefore difficult for a compiler to check this, and
so many systems make a dynamic check at run-time. It is not at all clear whether a
program containing an assignment to a name parameter, with an actual parameter
inconsistent with this, can be legitimately rejected at compile-time. It may well be
that the assignment is not executed when the actual parameter is not a variable.
The author’s view is that the check should be dynamic, but if an actual parameter
is inconsistent with this, the compiler should print a warning message (and compile
the program).

Both KDF9 compilers translate the program and fail it on execution. The
Whetstone compiler error message ‘integer assigned to real actual parameter called
by name’ is not quite correct. The Kidsgrove compiler error message is less precise
‘invalid assignment to name parameter’.

Test 8

This program contains a trivial syntax error, a declaration follows a statement. It
should fail to compile.

Fails to compile in both systems with the messages ‘declaration follows state-
ment’ (Whetstone) and ‘declarator not in block head or specifier not in procedure
head’ (Kidsgrove).

Test 9

The removal of comments from an ALGOL program is not as straightforward as
one might expect. The reason for this is that comments are of three types, following
comment, following end and a parameter comment. All of these forms have dif-
ferent constraints, and the context in which they appear requires a nearly complete
syntax check. The next six programs illustrate these problems. This test ought to
compile although it contains some very odd comments. There is a grave danger that
a statement could get lost in an end comment, so a compiler should give a warning
if a delimiter appears in an end comment (as in this case). Note that strings and
comments are unconstrained in their use of bracketing pairs (i.e. 0, [] , begin end,
for do). The program contains one nested string which could be removed if they
were not allowed in an implementation.

Compiles and executes successfully with the Whetstone system, but prints a
warning that st, a and b are declared but not used, and that an end comment
contains a delimiter. Compiles and executes without comment with the Kidsgrove
compiler.

Test 10

This is also a valid program containing odd comments. If one ‘comment’ were
removed, then it is possible that the program could fail by having too few parameters
to a procedure call. Compiles and executes successfully with both KDF9 systems
(producing no output), but the Whetstone compiler gives a warning of identifiers
declared but not used.

Test 11

This program is invalid. A parameter-like comment appears where a comma is
expected but not the comma between procedure parameters. Thus if a compiler
replaced any parameter-like comment by a comma before doing the rest of the
syntax analysis, this program could compile.

8

Fails to translate in Whetstone, with the message ‘misused) other than in
expression’. Fails to translate in Kidsgrove with the message ‘various syntax errors
in block or procedure head’. Both compilers pinpoint the error accurately.

Test 12

A parameter comment must have a colon after the final letter. This program is
invalid because this colon is omitted both in a procedure declaration and a procedure
call.

The Whetstone compiler detects both errors with the message ‘illegal parameter
comment’, but does not adequately recover to find any further errors. The Kidsgrove
compiler fails to compile the program, nor does it produce any diagnostic.

Test 13

The syntax of comments following the symbol comment prohibits labelled com-
ments. This program tests for this point, and should therefore fail to compile.

Fail ‘comment does not follow begin or;’ in Whetstone. The Kidsgrove compiler
executed an invalid instruction without producing any error message. It is known
that the compiler accepts labelled comments.

Test 14

Parameter comments can only contain letters and digits. A parameter comment
in this program contains comment, and is therefore invalid. It is not clear if this
program should be rejected when a reserved word representation is used, since the
basic symbol comment will only contain letters.

Fails to translate in Whetstone with three error messages ‘illegal parameter
comment’ twice and then ‘end of file inside program’. The Kidsgrove compiler
executed an invalid instruction without printing an error message.

Test 15

Basically similar to test 10, this contains strings and paranieter comments in a form
that could confuse a poor syntax analyser. This program is invalid, unlike test 10.

Fails to translate in Whetstone, with two error messages ‘illegal parameter de-
limiter after string’, and ‘closing string quote misplaced’. Fails to translate in
Kidsgrove with the message ‘bracket mismatch’.

Test 16

A valid program, checking that nested strings are acceptable to the compiler.
Compiles and executes successfully with both the Whetstone and Kidsgrove

systems (no output is produced).

Test 17

Checks that identifiers can be used that are spelt the same way as basic symbols.
This test will fail in any reserved word representation system.

Compiles and executes successfully with both the Whetstone and Kidsgrove
systems (no output is produced).

9

Test 18

This program checks that redeclaration of ‘similar’ identifiers within the same block
fails to translate. The identifiers, while formally distinct, are the same in the first
47 characters. The position of the error detected by the compiler should indicate
the number of significant characters in an identifier. Also checks that spaces are
allowed in identifiers and constants.

Fails to translate ‘redeclaration of an identifier’ because only the first eight
characters are significant in Whetstone. Compiles and executes successfully (no
output) in Kidsgrove because 155 characters are significant in an identifier.

Test 19

This program contains a procedure call in which the dimension of the formal and
actual array parameters are different. This is invalid ALGOL 60, but since array
specifications do not give the dimension, it is difficult for the compiler to check.

The Whetstone system compiles the program, but it fails in execution with the
message ‘incorrect number of subscripts to formal array’. The Kidsgrove ALGOL
compiler also compiles it, but fails on execution with the message ‘overflow set
on exit from procedure sum 2’. This has been produced because the core-store is
initially set to an undefined floating point value which is likely to cause overflow.
The invalid access to the array elements evidently fetches one of these words causing
overflow. The error message is therefore very misleading, as the system makes no
explicit check for this form of error.

Test 20

One difficulty with ALGOL 60 is that the dimension of a formal array parameter
cannot be specified. Where necessary, the compiler must deduce this from the
source text. However, if a formal array parameter is only handed on to a further
procedure, the dimension may not be determinable without quite complex analysis.
It is not clear from the Report if a program which uses an array parameter with
different dimensions can be regarded as correct.

These problems are illustrated by this and the following test. Both programs
attempt by different means to provide a procedure to add up the element of two
arrays of one and two dimensions. This test is the least dubious, as each procedure
uses the formal array consistently. A compiler could, with good reason, refuse
to compile the program on the grounds that the actual arrays submitted to the
procedure ‘sum’ vary in dimension. Certainly a compiler should print a warning
message and insert additional run-time checking code.

Compiles and executes on both KDF9 systems, printing the two numbers 14 and
60.

Test 21

Similar program to test 20, except that within one procedure a formal array param-
eter is used with a variable number of subscripts. The use of each array is correct,
but the compiler cannot check this at compile time. Since a run-time check would
have to be made at each array access, to accept (and validate) programs like this,
the author’s view is that this program should not compile.

Fails to compile with the Whetstone system giving the message ‘wrong number of
subscripts or parameters’. Compiles and executes ‘successfully’ with the Kidsgrove
compiler printing the two numbers 14 and 60; however this is only achieved at the
cost of performing no parameter checking.

10

Test 22

The implementation of label parameters in ALGOL 60 is quite complex because of
dynamic storage allocation. The corresponding goto must not only jump to the
correct machine address, but it must also restore the correct activation of the block
enclosing the label.

These difficulties are illustrated with this example involving a recursive proce-
dure (to get several activations of the label ‘exit’). The program prints the numbers
1 to 10, and ran successfully with both the KDF9 compilers.

Test 23

A further difficulty with label parameters is caused by the fact that they can appear
in the value list. The corresponding actual parameter to a label by name must not
be evaluated until the goto is reached. Some of these points are illustrated in this
example, which is constructed so as to loop or fail if the labels are not evaluated at
the right point.

Whetstone compiler translated and executed the program correctly, printing the
two numbers 1 and 2. The Kidsgrove compiler failed to translate the program with
the message ‘monadic (operand 1) not available, machine or real array identifier used
as actual parameter where formal was real by value’. This message is completely
misleading and, as no positional information is given, it is virtually useless. The
error is apparently caused by having a switch element as the actual parameter to a
label by value.

Test 24

Array parameters can also be called by value, in which case, a completely new copy
of the array must be made. This mechanism causes obvious implementation difficul-
ties and is sometimes excluded by a compiler. In this test, a further complication
arises because the actual and formal arrays are of different types. Hence a type
conversion is required. If value arrays are allowed, but the type conversion is not,
then the integer from the actual array declaration can be omitted.

Compiles and executes correctly with both KDF9 compilers, printing the value
45. Value arrays are not important, especially with type conversion, so failing this
test is not serious.

Test 25

The syntax of real numbers is surprisingly complex, and all fifteen different forms
are used in this program. As equality of real numbers cannot be guaranteed, the
numbers are merely printed. The program prints 43 numbers, the output of which
is obvious from the program text.

The program also checks that numbers with excessive zeros immediately after a
decimal point are not converted with loss of accuracy. Similarly π is expressed with
excessive precision, but should be printed to the full accuracy of the machine.

Compiles and executes correctly in both the Whetstone and Kidsgrove systems.
The round-off characteristics of the two implementations is different (see test 55),
and so the actual output is marginally different, but not excessively so.

Test 26

Although some ALGOL experts would disagree, there appears to be three levels of
nomenclature in a procedure. These are the procedure identifier (if a function) and
the parameters, labels to the procedure body, and locals to the procedure body.

11

This program contains three clashing identifiers at each level. The purist may
expect such a program to compile, but the author’s view is that it should not, or
at least a warning should be produced.

The program fails to compile in Whetstone with the message ‘redeclaration of an
identifier’. Compiles and executes (no output) without comment with the Kidsgrove
compiler.

Test 27

This test was constructed by P Lucas to demonstrate an error in environment
control in an implementation of PL/I. It was communicated to the author by Dr E
Satterthwaite. Formal procedures, like labels, involve an activation level apart from
a machine-code address. The purpose of this test is to show that the activation
level is handled correctly.

The program compiles and executes correctly with the Whetstone system, print-
ing the numbers 2, 1, 2, 2. The program fails to translate with the Kidsgrove com-
piler, with no intelligible error message. Investigation showed that this was caused
by the compiler attempting (unsuccessfully) to discover the parameter specification
of formal procedure parameters. The chain of formal procedure calls involved a
loop, so the compiler itself looped attempting to find an actual procedure giving
the specification details. Successful compilation and execution of programs that are
as complex as this is not of great practical significance, but failure may indicate
more serious defects in the compiler. The Kidsgrove compiler’s performance cannot
be regarded as satisfactory.

Test 28

This program is another test of the activation levels of formal procedures. The
original version was from Dr Satterthwaite in ALGOL W. The coding In ALGOL
60 could use labels (test 30) or procedures as in this test.

The program compiled and executed successfully with the Whetstone system,
printing the six numbers 4, 5, 4, 5, 6, 7. The Kidsgrove compiler compiled the
program but executed it incorrectly printing the 12 numbers 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 6, 7. This was traced to the fact that the compiler does not maintain an
activation level with formal procedures — only the machine-code address. This is a
logical error in the compiler, but it is not likely to have a significantly detrimental
effect in most applications programs.

Test 29

This program is a modified version of test 27. Some compilers, with good reason,
demand that the parameter specification of each actual procedure given as a formal
parameter should be identical. Test 27 violates this requirement because it has a
formal parameter g in p which may require two parameters or none, depending on
the actual procedure parameter. The program should therefore compile and execute
as for test 27, as is the case in the Whetstone system. The Kidsgrove compiler failed
in the same manner as test 27, that is, it looped.

Test 30

This program is a logically similar test to number 28, using label parameters instead
of procedure parameters.

12

The program compiled and executed successfully with both KDF9 systems.
Hence the Kidsgrove compiler handles the environment of labels correctly, but not
that of formal procedures.

Test 31

This is an invalid program and should fail to compile. An if may not follow a then,
even in those cases where the context, such as a conditional expression, does not
necessarily make it unambiguous.

Whetstone fails ‘if misused’ twice. Kidsgrove compiler fails ‘conditional expres-
sion with no else part’, with no indication of the source text position.

Test 32

There are substantial difficulties in implementing name parameters in ALGOL,
especially when assignments are made to the parameter. This is because the validity
of the assignment can only really be checked at run-time. A further difficulty arises
if the formal and actual parameters are not of the same type but are both integer
or real. In this case, a dynamic check must be made on assignment to see if a
type conversion is necessary. Neither of the KDF9 compilers allows for this type
changing on name assignment, but both compile the program. Some compilers
reject this program at compile time because with the first call of ass the second
actual parameter is -1 which cannot be assigned. However, although an assignment
does appear in the body of the procedure, it is not executed. The program should
output 8 and 16.0.

Results: Whetstone compiler fails ‘real number assigned to an integer actual
parameter call by name’, on the last call of ass. The Kidsgrove compiler fails at the
same point with the message ‘invalid actual parameter on name assignment’.

In the author’s view to fail at either compile time or run-time as above, or to
fail to execute correctly are all reasonable. The important point is that if it does
not execute correctly a reasonable diagnostic should be produced.

Tests 33-51

The 19 tests from test 33 to 51 have been generated automatically using the ML/I
system [3]. Their purpose is to test that programs which are complicated in some
sense do not overflow any compiler tables. They have been chosen by taking every
syntactic list which appears in the ALGOL report (defined by simple recursion).
The test consists of a simple program which contains this list which is about three
times longer than might ordinarily be expected in programs of a few pages in length.
Thus, except for the one long list, the programs are very simple.

Test 33

The nesting of procedures can cause implementation difficulties. This program
contains six procedures nested within each other. There is no output.

Both Whetstone and Kidsgrove compilers apparently compile and execute this
successfully.

Test 34

Contains 15 nested blocks. There is no output. It is compiled and executed correctly
in both Whetstone and Kidsgrove.

13

Test 35

Program declares 300 real variables in one list. They are all initialised to 1.0,
and their sum is printed out. Compiles and executes correctly in Whetstone and
Kidsgrove. Prints the number 300.

Test 36

Program declares 60 1-dimensional arrays of ten elements each in one array segment.
The first element of each array is set to 1.0 and their sum is printed.

Compiles and executes successfully in Whetstone. Fails in Kidsgrove at compile
time with the error message ‘too many dimensions in array or too many arrays in
segment’. The manual states that not more than 31 arrays can be declared in a
segment. This is not a severe restriction, as they can easily be broken up.

Test 37

The program contains 12 nested for loops, and should print the number 8190. Com-
piles in Whetstone ALGOL, but fails due to lack of time after 3 minutes execution.
Compiles and executes successfully in Kidsgrove (26 seconds to compile, 3 seconds
to execute).

Test 38

The program contains 24 nested conditional statements, and should print the num-
ber 24. Compiles and executes successfully with both the Kidsgrove and Whetstone
systems.

Test 39

This contains a conditional expression nested nine deep, and should print the num-
ber 2. Compiles and executes successfully in both the Whetstone and Kidsgrove
systems.

Test 40

Tests that switches if length 300 are allowed. The program also executes a to each
label of the switch, and should print the number 301.

The Whetstone compiler translates the program in 25 seconds, and takes 14
seconds to execute the program successfully.

The Kidsgrove compiler fails to translate the program because of a stated re-
striction that switches are limited to 64 elements. In the authors opinion this is an
annoying but not a very severe restriction (longer switches can be broken into two
or more).

Test 41

Contains a function with 60 integer value parameters. Prints the number 60. Com-
piles and executes successfully with Whetstone and Kidsgrove compilers.

Test 42

This test is to check the availability of arrays of large dimension. An array of 12
dimensions is used containing 212 elements. The first element is initialised and
printed (value is 1.0).

14

Compiles and executes successfully with the Whetstone and Kidsgrove compilers.

Test 43

Contains an expression nested 15 deep. The nesting is straightforward but of such
a form that special action would be necessary to produce good code on a left to
right parse. With the Kidsgrove compiler, this checks that possible overflow of the
KDF9 nesting store is handled correctly.

Prints the number 15. Compiles and executes correctly with both the Whetstone
and Kidegrove systems.

Test 44

Contains a nested expression 15 deep which is rather more complex than the last
one. Prints the real number 4− 3/215 = 3.99981689.....

Translates and executes successfully in both Whetstone and Kidsgrove systems.

Test 45

Contains a nested call (9 deep) of the standard function sqrt. Prints the number
1.03811889....

Translates and executes successfully in both Whetstone and Kidsgrove systems.

Test 46

Contains a nested designational expression of depth 6. Produces no output. Trans-
lates and executes successfully in both Whetstone and Kidsgrove systems.

Test 47

Program consists of six labelled dummy statements only. Translates and executes
successfully with the Whetstone system. Although the program fails to translate
with the Kidsgrove compiler, no error message is produced. This is thought to be
because the program contains no executable code (as for test 13).

Test 48

Program contains a series of compound statements nested 24 deep. Prints the
number 24.

Translates and executes successfully with both the Whetstone and Kidsgrove
systems.

Test 49

Contains an assignment statement with 15 elements on the left hand side. Prints
the number 15.

Translates and executes successfully with both the Whetstone and Kidsgrove
systems.

Test 50

Contains a for loop with 60 for test elements. Prints the number 1830. Translates
and executes successfully with both the Whetstone and Kidsgrove systems.

15

Test 51

Declares in one list 60 arrays of ten elements with separate bounds. Initializes
the first element of each array and prints their sum (60). Translates and executes
successfully with both Whetstone and Kidsgrove systems.

Test 52

An expression can appear in a number of places in the syntax of ALGOL. The
expression can be arithmetic, boolean or designational. A complicated expression
of all these types has been constructed and inserted in examples of all the valid
places. For this purpose ML/I was used (indeed, it would be tedious to do it
without such a tool). Prints the number 6.8, but could be subject to substantial
rounding errors1.

Compiles and executes successfully with Whetstone in two seconds. Fails to
compile in Kidsgrove with the error message ‘generator nest with more than one
result (conditional expression)’. Since no positional indication is given, the com-
piler cannot be regarded as satisfactory. Closer inspection reveals that the error
is probably due to having a complicated expression in the step part of a for list
element.

Test 53

Tests the integer divide operator against the definition given in the ALGOL report
using sign and entier. No output is produced if agreement is found with 20 tests.
However, the ALGOL definition relies upon the fact that, for example, entier (2/1)
is 2. Rounding errors could result in output being produced although the integer
divide is calculated correctly. It would have been much better if integer divide had
been defined without the use of real operations. The output allows a hand check to
be made.

Compiles and executes successfully with both Whetstone and Kidsgrove systems.

Test 54

Tests sign, entier and abs, all of which should not involve any rounding errors. Real
equality is used with abs, which could be criticised on the grounds that this is not
well defined. However it is hard to believe in this case that equality should not be
found. As with test 53, entier (100.0) may be correctly implemented and yet, as
above not equal to 100.

Compiles and executes successfully with both Whetstone and Kidsgrove systems.

Test 55

This is quite a long program, whose object is to test the consistency of different
methods for obtaining a rational constant. The three methods are direct calculation
using one real division, using an explicit constant in the program, and reading the
number off the data tape. The three real quantities obtained can be compared for
equality or the form of inequality. In the author’s view, the constant in the program
and that on the data tape should produce identical results since the same routine
should be used. The calculated value could be different, since it will depend upon
the floating point division hardware. In all cases there should be no consistent bias,
as this would indicate a lack of care in dealing with round-off conditions.

1As with the other examples, the program was then formatted with SOAP [21]. This revealed
an error in the line justification part of SOAP.

16

The program works by using 399 rational numbers of the form d.dd (d.dd =
0.01 to 1.00), l0d.dd (100.01 to 101.00), 1000d.dd (10000.01 to 10001.00) and 0.<20
digits> (value = 1/(i× i−1), i = 2 to 100). The last case involves rational fractions
specified to 20 decimal digits, which should be adequate for up to 64-bit real arith-
metic (the fractions are correctly rounded as decimals). The test using the last 99
numbers is substantially more severe since it involves reading more digits than the
precision of the machine allows.

The program counts each form of inequality, and prints this out after each block
of tests, producing 36 numbers in all.

The results are best summarised by a table. Whetstone ALGOL completed the
program in 6 seconds and executed in 28 seconds. The final matrix of inequalities
was

operator (read,calculated), (calculated,constant), (constant,read)
< 182 0 1
= 216 372 233
> 1 27 165

There is therefore a consistant bias except for one number, with constan ≤
calculated ≤ read. Strict inequality occurs 41% and 7% of the time respectively.
On this basis, the routine in the Whetstone compiler for reading constants must be
regarded as suspect. The Kidsgrove system uses the same routine for reading data
and so gives the same 7% deviation from the calculated values as above. The full
matrix is

operator (read,calculated), (calculated,constant), (constant,read)
< 30 0 0
= 369 372 396
> 0 27 3

Hence there is a one per cent deviation between the calculated and constant
values. The program took 1 minute 6 seconds to compile and 8 seconds to execute.

In order to see if another input-output package would produce better answers,
the program was converted and run in Babel [22]. The read routine is common
to the compiler and run-time system and is known to work double length. With
360 numbers (fewer due to a compiler limitation) only on inequality was found.This
shows that good results are attainable with the KDF9 hardware.

Further tests should be made to measure the magnitude of the deviations, but
interpretation of the results is likely to be very machine dependent.

Test 56

The operator ↑ is very difficult to implement correctly because it dynamic type
checking. Most systems redefine the operator so as to avoid this. The other related
difficulty is that there are 18 different cases depending upon the type and sign of
the assignments. Ten of these are valid and eight are invalid. This test program
attempts all the ten valid cases and one invalid one.

The program rises real equality against the defining formula given in the Report.
It can be argued that equality is not to be expected because, unlike integer divide,
the operator is not defined by an ALGOL algorithm (and so any algorithm with
different round-off properties could be used). Nevertheless, failure of the equality
test does indicate that further analysis should be done.

17

Tho test compiles and fails to execute in both systems on the final computation
of (-2.0)↑ 3.0. Note that this final test could give the answer -8 if the real nature
of the arguments is ignored. Whetstone ALGOL prints the value of the arguments
on failure, and the Kidsgrove system produces a stores print which indirectly gives
the value of the arguments.

Test 57

Attempts to calculate 0.0↑ 0. Variables are used so that the calculation of constant
expressions by the compiler is not used. Ideally this should be checked as well.

In both systems the program compiles and fails to execute in the manner required
by the Report.

Test 58

Attempts to calculate 0 ↑ 0, which is invalid. Fails on execution in both systems.

Test 59

Attempts to calculate 0.0 ↑(-1.0). Fails on execution in both systems, but the post
mortem print in the Kidsgrove system also failed which has since been corrected.

Test 60

As for test 59 with 0 ↑(-1.0). Results as for test 59.

Test 61

As for test 59 with (-2) ↑ 3.2. Results as for test 59.

Test 62

Test to check that 0 ↑ (-2) fails on execution. This fails ‘overflow in ↑’ in the
Whetstone system. Produces the answer 0 with no error indication in the Kidsgrove
system. This was due to clearing the hardware overflow flag. This error has now
been corrected.

Test 63

As for test 62 with 0.0 ↑ (-2).

Test 64

It is not clear from the ALGOL Report if a conditional expression can have a
different type depending on the result of the condition. In this test, the two types
are integer and real, but when a real type is produced it must fail because integer
divide can only have integer arguments. In the author’s opinion this test should fail
at compile time.

Both the Whetstone and Kidsgrove systems compile the test and execute the
condition successfully if an integer value is produced (printing 0.0). The Whetstone
system performs a dynamic type check. The Kidsgrove compiler always produces
a floating point answer from such conditions, but if the value is not integral, the
integer divide operation will fail. This technique is not formally correct, since the
expression (if true then 1.0 else 2) ÷ 6 will not fail. Nevertheless it is probably
as near to the Report as can be managed.

18

Test 65

The type of the result <integer> ↑ <integer> depends upon the sign of the expo-
nent. Dynamic type checks are therefore required if the Report is followed in detail.
This test calculates 2 ↑ 3 ÷ 3, which should probably be rejected at compile time.

Both the Whetstone and Kidsgrove compilers accept this, and the methods used
follow that noted in test 64. The value printed should be 2.

Test 66

Tests that the precedence of the integer operators is apparently correct. Should
print the number 25. Also contains a test similar to number 65, 50 it could fail just
because of this.

Compiles and executes successfully with both systems.

Test 67

This test is similar to number 65 and should fail to execute. Compiles but fails to
execute in both Whetstone and Kidsgrove.

Test 68

There is a difficulty in ALGOL 60 concerning switches and for loops. Jumps into
the middle of a for loop are not allowed although the for loop statement does not
necessarily constitute a block. Apart from improving program clarity, there are
good practical reasons for this, namely that the control variable may be undefined,
and the action with multiple for list elements will be indeterminate.

Since a switch list may involve several labels, any of which could be selected in
principle by a statement of the form goto s[i], all these labels must be such that no
jump into a for loop can be made.

This test consists of a switch declared outside a for loop, but all the labels and
uses of the switch are inside the loop. Thus there is no possibility of violating
the rule about jumping into a for loop, although a compiler may have difficulty in
checking this. Since the switch could more reasonably have been declared in the for
loop, a compiler could reject this program on the grounds that it cannot make the
necessary checks at compile-time. In some systems, the check is made at run-time.

The Whetstone compiler treats the body of the for loop as a block, so that the
program fails to translate because the switch labels are undeclared. The Kidsgrove
compiler translates and executes the program successfully (there is no output).

Test 69

This program contains a switch which, unlike test 68, could not possibly be shown
to be valid at compile-time. The switch labels straddle a for loop), but no invalid
jump is made.

Fails to compile with Whetstone because the body of the for loop is regarded as
a block. Compiles and executes successfully with the Kidsgrove compiler, printing
the numbers 1, 3 and 3.

Test 70

A test very similar to that of number 69, but it contains an invalid jump into a for
loop. Since the body of a for loop containing multiple for list elements is usually
implemented as a subroutine, run-time failures could result.

19

Fails to compile with Whetstone because the body of the for loop is regarded as
a block. Compiles but fails to execute in Kidsgrove system. The failure was caused
by jumping to an undefined location at the end of the for loop. This illustrates that
the Kidsgrove compiler only handled tests 68 and 69 correctly because it made no
check on the validity of the use of switches.

Test 71

One difficulty in implementing an efficient mechanism for calling procedures is
handling parameters. A formal procedure call cannot always have its parameters
checked at compile time because the parameter specification of the actual proce-
dure is not necessarily fixed. Various techniques have been adopted to overcome
this. The Whetstone system, being interpretive, can afford to check all parame-
ters at run-time, but this cannot be regarded as a very effective solution for a true
compiler. The KDF9 Egdon ALGOL compiler insists on a comment giving the pa-
rameter specification to each formal procedure. The Atlas ALGOL and Kidsgrove
compilers attempt to determine the specification from actual calls, failing if this is
inadequate.

The Whetstone compiler insists that in any block a procedure is called with the
same number of parameters. This test complies with that restriction, but the actual
procedures have a different parameter specification so that compile-time checking
is impossible. The test works with the Whetstone system, printing the number
5. It fails to compile with the Kidsgrove system, giving the message ‘formal level
statement without an actual statement including formal’, and giving no indication
of the text position or identifier concerned.

Test 72

This test is identical to that of test 71 except that a slight change has been made
so that there is no longer a fixed number of parameters to the formal procedure. It
therefore fails to translate with the Whetstone compiler. The Kidsgrove compiler
gives the same error message on translation as before.

It is probably an acceptable restriction that procedure parameters should always
have the same specification. Unlike the Kidsgrove system, compilers should produce
adequate information to diagnose the error, which in this case may involve both the
formal procedure parameters and the actual parameters.

Test 73

This is a performance test for recursive procedure calls, which has been used to
compare a number of different systems [24]. The recursive procedure calculates Ack-
ermann’s function using the definitive algorithm. In the original paper, Sundblad
measures two figures — the rate at which procedures are called in the evaluation,
and the maximum n for which Ackermann (3, n) can be calculated. The second
figure is in most implementations limited by the core size required for the stack. As
the sise required for the stack doubles for each successive value of n, this is not a
good measure. It would be better to state the number of words required for each
recursion of the function (although this may not necessarily be available).

The program calculates Ackermann (3, n) for n upwards, noting the total time
and the time per call on each iteration. The value of the function is also checked.

The test compiled and executed successfully in both the Whetstone and Kids-
grove systems. Whetstone took 11 milliseconds per procedure call and Kidsgrove
532 microseconds. No attempt was made to run the tests for the highest possible
value of n since the rate of call of procedures did not change. An error was found in

20

the post-mortem routine in the Kidsgrove system in that it attempted to print out
information on all the nested calls - sometimes over 300. This produced excessive
line-printer output, and so was modified to print only the last 20 recursive calls.
Each depth of recursion requires ten words, so it was possible to calculate the exact
time and space requirements of the subsequent values. In fact, with Sundblad’s
standard core image (26K words), it is possible to calculate Ackermann (3,8) on
KDF9 in 1482 seconds, which is further than any other known system has taken it.
Sundblad therefore defines the ‘capability’ of the KDF9 to be 8. The results known
to the author are:

Language/computer Time per call Capability
(microseconds)

Algol 60, 360/75, F 870 3
Algol W, 360/75 103 6
Algol W, 360/67 121 6
Algol 60, CDC 6600, v1.1 470 6
Algol 60, CDC 6600, v2.0 410 4
Simula-67, CDC 6600, v1.0 354 6
PL/I, 360/75 v4.3, 270-550 5
Algol 60, KDF9, Mk2 532 8
Machine-code, KDF9 103 10

Bearing in mind the speed of the machine, the KDF9 is significantly better than
any of the other systems, although ALGOL W is also good especially if a subsequent
improvement of 20 per cent in the times are taken into account.

The reason for the good figures from KIDF9 is that all parameter checking is
performed at compile-time and the calculation of value parameters is handled in a
pre-call sequence. Similar remarks apply to ATLAS [25].

The last entry in the above table is that given by hand coding the function
using the same logic. Recursive linkage was not set-up unless the call was genuinely
recursive, but otherwise the coding was not optimised to any great extent. Three
words were required for each recursive depth — one for each parameter and the
third for the return address,

Test 74

The Report states that the evaluation of an expression in a bound-pair list cannot
involve local variables. However, since the bound-pair lists are expressions within a
block, their position is somewhat anomalous. In practice, it would be better if these
expressions were regarded as being in the outer block to the array declaration, but
this is not the case.

This test program, which is invalid ALGOL 60, illustrates the difficulty. The
bound-pair list involves an integer n, declared both locally and in the outer block.
The compiler should use the local n (which is declared after the array declaration)
and hence fail. One-pass compilers could have difficulty with this unless, as in
Whetstone, an explicit test is made far this error.

Fails to translate in both Whetstone and Kidsgrove compilers with a message
that a local variable has been used in an array bound-pair list.

Test 75

This is an input-output test, similar in many respects to test 55. The specification
of the IFIP input-output procedures states that ‘outreal’ and ‘inreal’ should be
exact converses of each other. Therefore reading a real value previously printed

21

should give the same bit-pattern, This can only be achieved by allowing excess
decimal digits to be specified in the format for output (excess, that is, over the
representation in binary in the computer). This is a very tight constraint which
is not likely to be achieved unless special care has been taken in designing the
input-output routines.

The test program outputs 99 fractions, and reads the same values. The program
must be run twice in order to construct the correct data. The numbers read are
compared against the computed value of the fraction.

The results with Whetstone and Kidsgrove are the same, since the input-output
package is the same. In fact

input > output 8 times
input = output 68 times
input > output 23 times

The tests were also run with the Babel system [22]. The output has a defect in
that only 11 decimal places can be specified. Reading 12-digit ALGOL data gave
the results (13, 68, 18) that is, much the same as ALGOL but with less bias. With
11 digit output as produced by Babel, the results were (40, 13, 46), which cannot
be regarded as satisfactory.

Test 76

This program tests that variables can be used before being declared in the source
text. The test is so constructed that a one-pass compiler may compile the program
because outer block variables have the same identifier. Compilers not allowing use
before declaration should not compile this program, and should give an intelligible
error message. Otherwise it should compile and execute successfully, printing the
number 0.

Compiles and executes successfully in both KDF9 ALGOL systems.

Test 77

The next two tests exercise the procedure parameter mechanism. Various obscure
points connected with particular parameters are covered by special tests elsewhere.

An actual parameter can be one of five basic forms according to the Report. In
these tests, an expression is one of three types, namely designational, boolean or
arithmetic. A formal parameter can be specified to be of one of thirteen different
types, seven of which can be listed as being by value. This gives a total of 20 × 7
= 140 different pairs of formal-actual parameters. In practice the variation is even
greater than this because an array identifier can be of three types, and a procedure
identifier of four types. Of the 140 cases considered here, 26 are valid and 114
invalid.

This test uses all the 26 valid cases in a short calculation to demonstrate the
mechanism. The single number 0 should be printed. The test compiled and executed
successfully with the Whetstone system. A translation failure occurred with the
Kidsgrove compiler, the reason being given as ‘generator nest with more than one
result (conditional expression)’. The meaning of this is not known and as the
position of the source text error is also unknown, the compiler did not perform this
test satisfactorily.

Test 78

This test contains an instance of each of the 114 invalid formal-actual parameter
pairs. Ideally, the test should fail to translate, listing a good number of these invalid

22

parameters.
The test compiles in the Whetstone system. This is a substantial deficiency in

the system and stems from the fact that almost all type-checking is left to run-
time. The program fails on execution as expected. The program fails to translate
with the Kidsgrove compiler giving the expected error message (but only one error
indication).

Test 79

This test was written by Naur [19] to demonstrate the type-checking capabilities
of the GIER ALGOL compiler. This version contains 27 type-check errors. It also
uses variables before declaration, and uses a local variable in a bound-pair list. An
interesting observation is to note how many errors are detected in one compilation
attempt.

The Whetstone system produced eleven error messages from the compilation.
The first four errors were easily identified with actual source text errors, but the
next four could not be pinpointed. Being a one pass compiler which does not restrict
the language to no use before declaration, details of the actual declarations must
sometimes be deduced during compilation. This is not always successful, so many
checks are left to run-time.

The Kidsgrove compiler only found one error ‘BPL variable local to current
block’, evidently complaining that the variable i, appearing in the bound-pair list,
was local to the block.

Test 80

Compiler-writers have difficulty in implementing a strange feature of ALGOL that
the control variable for a for loop can be a subscripted variable. It can be argued
that this is not legitimate as the Report refers to the control variable. Certainly
many implementations reject this, not without justification. The compilation arises
because the address of the control variable must be re-evaluated at least once per
loop.

This program is a straightforward one, testing that a simple use of a subscripted
control variable to initialise an array apparently works. A single number 0 should be
printed. Compiles and executes successfully with both the Whetstone and Kidsgrove
systems.

Test 81

As pointed out under test 80, the exact interpretation to be placed on the use of a
subscripted variable as a for loop control variable is in doubt [12]. This test program,
designed by Knuth, gives a different result according to the number of evaluations
of the control variable address, step and limit in a for loop. The program may
output a value between 4 and 23, in fact both KDF9 systems produce 18.

From the point of view of compiler validation, any value between 4 and 23
should be acceptable, but ideally the value should be deducible from the compiler
specification. It is more important that the program should compile, or if it fails to
translate because of a language restriction, the error message produced should be
intelligible.

Test 82

A dubious feature of ALGOL 60 is that functions can be called by means of a
procedure statement. It can be argued from the Report that this is not allowed as

23

the purpose of a function is to deliver a value, but it is not specifically excluded. It
is a sensible restriction, although there is little difficulty in the implementation.

Both systems compiled and executed this successfully, printing the number 1.

Test 83

Another dubious feature of ALGOL 60 is that a goto to a switch element out of its
bounds should be regarded as a dummy. The Report is very explicit an this point,
although the ECMA and IFIP subsets of ALGOL 60 specifically exclude this (and
regard it as an error). There are significant difficulties in implementation, and as
Knuth [13] has pointed out, it is impossible in any practical system to remove any
side-effects of the subscript evaluation. This test program by Knuth illustrated this
point. The program prints the 20th Fibonacci number 6765 provided out of bound
switches are implemented as dummies. The program also illustrates that recursion
of a procedure can be accomplished via a switch (and hence is difficult to spot).

The program translates and fails on execution in the Whetstone system with
the expected error that a switch index is out of range. The program translates but
fails in an unexpected manner in the Kidsgrove system. This has been traced to
not preserving a register for the evaluation of a switch index involving something
complex — in this case a recursive function call. The Kidsgrove compiler classifies
procedures and determines wether they are recursive. The compiler misclassified the
two procedures as being non-recursive, presumably because the switch was omitted.

Test 84

This is basically a performance test, derived from the GAMM measure [6]. This
measure is the weighted average of the time taken to execute five simple numerical
calculation loops; adding two vectors of thirty elements, multiplying two vectors, a
polynomial loop of ten terms, finding the maximum of ten elements and evaluating
a square root by Newton’s method for five iterations. The loops can be programmed
in any language, and in this case ALGOL 60 is used. In fact the loops are repeated
with the arrays involved as name parameters to a procedure, to see if this makes
any difference to the times taken. The same program was used to evaluate five
ALGOL compilers [25].

The program prints 96 numbers, the 13th and last being the value of the square
root of 2, the 8th and 21st being about 1.45423 while the rest give the loop times.
The GAMM figure is the time (usually quotes in microseconds) calculated from the
average of the five loop times t1, t2, t3, t4 and t5 by the formula

GAMM = (t1/30 + t2/60 + t3/20 + t4/20 + t5/15)/5

The GAMM figures as calculated by this program are:

Language Computer GAMM (µs)
Algol W 360/67 12.9 (in program)

17.5 (in procedure)
Algol 60 KDF9 (Kidsgrove) 134

KDF9 (optimiser) 53.4
Algol 60 KDF9 (Edgon) 97.6
Algol 60 6600 (Mk2) 12.1
Algol 60 1108 (NU) 12.2
Algol 60 1907 (XALT) 48.9
Algol 60 Atlas 56.4
Algol 60 B5500 63.7

24

The time taken to execute the program is about 106× GAMM, which can be
reduced by altering n appropriately.

It is important to remember that with the GAMM figure compiler optimisation
can be very effective because the loops are so simple. The program can be used to
show the limits of compiler optimisation, as it is unlikely that optimisation could be
more effective on ordinary programs. It cannot be regarded as a good benchmark
because the use of the various features of ALGOL is very one-sided — only real
one-dimensional arrays and simple for loops.

Test 85

This test is one of a number provided by Mr M Woodger from various sources, and
used in a comparison of five compilers [25]. The test is not a difficult one, but
the program contains a number of features not usually found in ordinary programs.
These are, procedure with a dummy body, use of a boolean before declaration,
redundant brackets in a boolean expression and an expression involving a parame-
terless function, type conversion and variables at different block levels.

The program compiled and executed successfully with both the KDF9 systems,
printing the single number -5.5. The program also ran successfully on the CDC
6600, 1900, 1108 and Atlas compilers. A slight modification was required on the
B5500 owing to the use before declaration.

Test 86

This is another test from Woodger’s collection. The program contains a few unusual
features viz: labels in peculiar positions, a complex designational expression, use
before declaration, a nested procedure and a formal integer procedure.

The program compiled and executed successfully with the Whetstone system,
warning that the identifiers d,e, f and g were declared but not used. The output
is the two numbers 1 and 3. The program failed to compile with the Kidsgrove
compiler although it worked in the test reported in the Computer Journal [25]. The
reason for this is that labels to programs are ignored by the compiler, so that it
failed ‘prog’ not declared. Inserting and extra begin end round the text allows
correct compilation and execution.

The program ran successfully on the CIDC 6600, 1900, 1108 and Atlas compilers.
Several modifications were necessary for execution on the B5500, because of use
before declaration, an identifier clashing with a reserved word and the inability to
address variables declared in the outer procedure of two nested procedures.

Test 87

Knuth [13] points out that the meaning of the step-until element with a real control
variable is not clear. As an example, he gives this test program where the step
value is the for loop control variable itself. In practice, a compiler is likely to have
little difficulty in implementing this, although it must be agreed that the loop is
very odd.

The program compiles and executes successfully with both the Whetstone and
Kidsgrove compilers, printing the number 25.

Test 88

The question of side-effects in ALGOL 60 was left unresolved in the Report. Such
effect occur when a function produces some other effect apart from delivering a

25

value. Some implementations, notably ALCOR [2], prohibit side-effects. If side-
effects are allowed (and it is difficult to detect them at compile-time) then various
ALGOL 60 constructions become sensitive to the order of evaluation of constituent
expressions. Knuth [13] illustrates this with a test program which is copied here.

Compiles and executes successfully with both the KDF9 systems, printing the
value 1/3. In view of the substantial difference in the implementation of these two
compilers, it is surprising that they give the same value on ibis test.

Test 89

This is an example of the use of the General Problem Solver of Knuth and Merner
as given by Randall and Russell [20]. The test shows how complex the call by name
mechanism can become in ALGOL 60. The result of the procedure is checked by
real equality which could cause an error on correct results owing to rounding errors.
If the check is successful, only the number is printed.

Compiles and executes correctly with both KDF9 systems.

Test 90

This in the third program from Woodger’s collection. It contains sone arrays with
complex bounds, a string including compound basic symbols and some unusual for
loops and expressions.

The program compiled and executed successfully in both KDF9 systems. The
program prints three numbers, 9, 4 and 0. Owing to real to integer rounding, the
first two numbers could be 8 and 3 without being formally incorrect. The program
ran correctly on the CDC 6600, 1900 and 1108 compilers. On Atlas minor modifica-
tion was necessary owing to the end within a string as this caused the preprocessor
to get out of step. On the B5500, modifications were necessary to overcome use
before declaration, and to the remove the string, which is not permitted in this
version of ALGOL.

Test 91

This is the fourth program from Woodger’s collection. It contains a complicated
switch, parameter comments on a call and declaration, and several different repre-
sentations of 0. Strictly, it is not valid ALGOL 60, since the value of the control
variable ‘c’ is used after exhaustion of the for loop. It should print the number 0.

The program compiles successfully with the Whetstone system, producing warn-
ing of an end comment with a delimiter and variables a, b, c, d, f, h and j declared
but not used. The execution was also successful. The program failed with the Kids-
grove compiler ‘switch element not in a parameter list or following a goto’. The
program does contain a switch element in a switch list, but a similar example was
accepted in test 83.

The program ran correctly on the CDC 6600, 1108, 1900, Atlas, and with minor
modifications on the B5500. A parameter comment had to be removed on the 1108.

Test 92

This is the fifth of the Woodger collection. It contains two integer procedures which
are called formally. It should print the number 42.

The program compiled and executed correctly with both KDF9 systems. It also
ran successfully on the CDC 6600, 1108, 1900, B5500 and Atlas computers.

26

Test 93

This program is a performance test devised by Knuth [11]. It was called ‘Man or
boy?’ because only man-sized compilers were supposed to be able to compile and
execute it successfully. This version calculates the tenth number in the series defined
by the main real function and prints three numbers, the middle one being -67. The
time that this takes is taken as the performance measure, which is the difference
of the first and last numbers printed. The program has been slightly modified to
avoid calling a function by a procedure statement. The execution involves recursive
function calls, nested procedures and very heavy use of name parameters.

The program compiled and executed successfully with both KDF9 systems, re-
quiring about 12,500 words of storage for the stack and program.

The time taken to execute the program on a number of systems is as follows:

KDF9 Kidsgrove 2.0 seconds
KDF9 Whetstone 11.6 seconds
CDC 6600 .175 seconds
NU 1108 .295 seconds
1.1µs 1907 7.0 seconds
Atlas .431 seconds

The program cannot be run on the B5500 because of both nested procedures
addressing problem.

Test 94

This program is another from Woodger’s collection, and tests for loops. It involves
some severe side-effects on the evaluation of expressions. For this reason, the number
printed may be different from 232, the number obtained from strict left to right
expression evaluation, without being provably incorrect. The most likely answer
otherwise is 133, and any other is likely to indicate an error.

Compiled and executed successfully on both KDF9 systems. Also ran correctly
on CDC 6600, Atlas and B5500. The alternative answer, indicating a different order
of expression evaluation, occurred on the 1108 and 1900.

Test 95

This test was written by Woodger to include various combinations of formal pro-
cedure call. The actual procedure parameters always have the same specification,
indicated by a comment (which is that required by the Egdon ALGOL compiler for
KDF9).

The Whetstone compiler successfully executes the program printing the num-
ber 7. The Kidsgrove compiler fails on translation giving the message ‘formal level
statement without an actual statement including formal’. Apparently, this actu-
ally means that the compiler was unable to deduce the specification of the formal
procedure parameters, required by the compiler for successful code generation.

The program can correctly on the CDC 6600, 1108, 1900, and Atlas. Modifica-
tion was required on the B5500 to allow access to a variable outer to two nested
procedures, but then executed correctly.

Test 96

This is a further test from the Woodger collection. It tests labels at different block
levels and label parameters, including one for a formal procedure.

27

The program compiled and printing the single number 5. The program ran
correctly on the CDC6600, 1900, 1108 and Atlas computers. It failed to translate
on the B5500 because of a restriction prohibiting label parameters to functions. This
restriction could conversion of some programs, but it is not a common requirement.

Test 97

This program was written by Dijkstra to test Jensen’s device on the Xl compiler,
which ran successfully in August 1960. It compiled and executed successfully cim
both KDF9 systems producing the number 16 for the double summation.

Executed correctly on the CDC 6600, 1108, 1900, Atlas and B5500 systems.

Test 98

This is a further test from the Woodger collection. It contains a test of name
parameters, access to which is recursive because of a nested call of a function. The
program should print the single number 23. Compiled and executed successfully on
both KDF9 systems. It also ran correctly on the CDC 6600, 1108, 1900, B5500 and
Atlas computers.

Test 99

The final test from the Woodger collection. It contains an array by value with
type conversion, an array declared with large values to the subscript bounds and an
assignment statement with a large left-part list. It should print the single number
14. It compiles and executes successfully with both the KDF9 systems. It also ran
correctly on the CDC 6600. Atlas and 1103 both required the removal of the type
conversion on the value array. On the B5500, slight modifications were necessary to
give the dimensions of formal arrays and to overcome use before declaration. The
test failed on the 1900, producing the value 13 instead of 14. The reason for this is
not known.

Test 100

A simple typing error lead to the discovery of an omission in the Whetstone compiler
of a check on the syntax. A declaration integer i, array a [1,1] is accepted with
the array declared as an integer array. The error has since been corrected by the
introduction of a new state variable which is set if a comma appears in a type
declaration.

The program failed to compile with the Kidsgrove systemn.

Test 101

The program contains an elementary syntax error, typical of a punching mistake.
It should fail to translate, and the clarity of the error message should be assessed.
Whetstone fails program ‘letter, digit, .; or 10 misused’, whereas the Kidsgrove com-
piler gives no positional information and the message ‘failure in selection matrix’.

Test 102

Elementary syntax error, similar to test 101. The Whetstone compiler gives the
message ‘adjacent delimiters inadmissible’, whereas the Kidsgrove compiler pro-
duces no positional information and the message ‘Nesting store not empty at end
of statement’.

28

Test 103

Elementary syntax error similar to test 101. The Whetstone compiler gives the
message ‘:= preceded by a constant or used inadmissibly’ whereas the Kidsgrove
compiler gives no positional information and the message ‘failure in selection ma-
trix’.

Test 104

Programs contains an elementary syntax error by placing a comma between the
thousands and hundreds in a constant. The Whetstone compiler fails ‘misused
comma or colon in ann expression’ whereas the Kidsgrove compiler gives no posi-
tional information and the message ‘failure in selection matrix’.

Test 105

Program contains an elementary syntax error by placing the exponent part of a
real number in brackets. The Whetstone compiler gives the error message ’illegal
number’, whereas the Kidsgrove compiler with two messages (one for each bracket)
‘invalid number’ and ‘bracket mismatch’.

Test 106

Program contains an elementary syntax error by placing a variabLe instead of an
exponent part to a real number. The Whetstone compiler gives the error message
‘letter, digit, . or 10 misused’ whereas the Kidsgrove compiler gives the message
‘invalid number’.

Test 107

Elementary syntax error caused by a missing multiply sign. The Whetstone com-
piler gives the message ‘letter, digit, . or 10 misused’ whereas the Kidsgrove compiler
gives no positional information and the message ’Nesting store not empty at end of
statement’.

Test 108

Elementary syntax error caused by a missing semicolon. The Whetstone compiler
gives the message ‘goto must not follow an identifier or a constant’ whereas the
Kidsgrove compiler produces the message ‘statement flag wrong - Algol basic symbol
used in incorrect statement/expression context’.

Test 109

Elementary syntax error whereby a constant is used as a statement. The Whetstone
compiler produces the message ‘constant used as a statement’ whereas the Kidsgrove
compiler gives no positional information and the message ‘Nesting store not empty
at end of statement’.

Test 110

Elementary syntax error caused by using a decimal point rather than a comma to
separate a type list. The Whetstone compiler produces the message ‘letter, dinit, 10

or misused’, whereas the Kidsgrove compiler produces the messages ‘various syntax
errors in block or procedure head’.

29

Test 111

The program contains an elementary syntax error caused by omitting a closing
round bracket in an expression. The Whetstone compiler fails with the message
‘statement ends incorrectly’ whereas the Kidsgrove compiler gives the message
‘bracket mismatch’.

Test 112

The program contains two statements consisting of an identifier which is not a
procedure identifier (but that of a simple variable). The Whetstone compiler pro-
duces two error messages ‘current use of identifier inconsistent with previous uses’
whereas the Kidsgrove compiler gives the erroneous message ‘undeclared identifier’
four times (once for each declaration and use).

Test 113

The program contains a call of ‘outreal’ with only one parameter. The Whetstone
compiler fails ‘wrong number of subscripts or parameters’ whereas the Kidsgrove
compiler gives no positional indication and the message ’number of formal and
actual parameters not equal’.

Test 114

Program contains an elementary syntax error caused by omitting a do in a for
statement. This program illustrates a defect in the error recovery in the Whetstone
compiler as it got into a loop without reading any source text. The repeated error
message was ‘omission or error preceeds begin or begin follows :=’. The Kidsgrove
compiler produced two error messages ‘statement flag wrong - Algol basic symbol
used in wrong expression/statement context’ and ‘bracket mismatch’.

Test 115

Program contains an elementary syntax error caused by using a (instead of [in
an array declaration. The program will translate in systems having only round
brackets. The Whetstone compiler gives the message ’misused (in array or switch
declaration’. The Kidsgrove compiler produces the messages ‘various syntax errors
in block or procedure head’ and ‘no endmessage after end of program’.

Test 116

Program contains an elementary syntax error caused by omitting an identifier in
a declaration. The Whetstone compiler produces the message ’declaration without
identifier’, whereas the Kidsgrove compiler gives ’various syntax errors in block or
procedure head’ and ‘bracket mismatch’.

Test 117

This program and syntax error, two incorrect uses of identifiers, and an undeclared
variable. The Whetstone compiler correctly locates three of the errors with the
messages ‘function designator used as designational expression’ and two messages
‘current use of an identifier inconsistent with previous uses’. The Kidsgrove compiler
produces seven messages ‘undeclared identifier’ listing all the identifiers incorrectly
used or not declared.

30

Test 118

The program contains an elementary syntax error caused by using a comma instead
of a colon in an array declaration. The Whetstone compiler produces the message
‘commas or colons wrong in array bounds’ whereas the Kidsgrove program compiled
and executed.

Test 119

The program contains an elementary syntax error caused by omitting a then. The
Whetstone compiler produces the message ‘goto must not follow an identifier or a
constant’, whereas the Kidsgrove compiler gives the message ‘statement flag wrong
- Algol basic symbol used in wrong statement/expression context’.

Test 120

The program contains an elementary syntax error caused by omitting a semicolon
in a declaration. The Whetstone compiler produces the message ‘real, integer or
boolean misplaced’ whereas the Kidsgrove compiler gives ‘various syntax errors in
block or procedure head’.

Test 121

A short, simple test of own variables. execute printing the numbers 3,6,12 and 24.
The program compiled and executed successfully in both KDF9 systems.

Test 122

A short, simple test of own variables, having two own variables with the same
identifier. The program should compile and execute printing the numbers 3,0,0 and
0. Ran correctly on both KDF9 systems.

Test 123

A similar program to the last two, but is invalid owing to access of an own variable
which has not been initialised. Failed on execution will the Whetstone system,
giving the message ‘access is made to a variable which has not been assigned a
value’. Compiled and executed with the Kidsgrove system, printing -4 four times.
Unless special hardware is available, it cannot be expected that this form of error
can be trapped without substantial loss in processing speed.

Test 124

The next four tests contain an invalid form of number obtained by omitting nec-
essary digits. The program prints the number ‘1’. The program compiles and
executes in Whetstone ALGOL, printing 1.0, although the flow diagram given in
Randall and Russell is correct. The compiler has been corrected. The program
fails to translate with the Kidsgrove compiler with the message ‘invalid number’.
Programs transcribed from FORTRAN could contain this error.

Test 125

Contains the invalid number 1.10 and the program fails to translate in both KDF9
systems giving the message ‘invalid number’.

31

Test 126

Contains the invalid number 10+ which is trapped by the Kidsgrove system but not
the Whetstone compiler (which gives 1.0).

Test 127

Contains the invalid number 10, which is trapped by both KDF9 systems.

Test 128

Contaiiis the invalid number ., which is trapped by the Kidsgrove system but not
the Whetstone compiler (which gives 0).

Test 129

The test checks that underflow is handled correctly with constants. In fact, the
Whetstone compiler fails the program with the message ‘number too large’. On
KDF9, underflow is not trapped by the hardware, so for consistency with this the
program should translate printing the value 0, which is the action taken by the
Kidsgrove compiler.

Test 130

A test similar to no 22 which checks labels in recursive procedures. In this case,
the labels are not parametric. The program should compile and execute printing
the numbers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 1, 6, 5, 4, 3, 2. Correctly handled
by both KDF9 systems.

10 Test summary

The 130 test programs are listed here, giving the results with the Whetstone and
Kidsgrove compilers together with a short description of the test itself.

Apart from the test number and description, the other columns are as follows:

Expected Action. A subjective judgement by the author

• T translates

• E executes

• F fails (on translation or execution)

For instance:

• TE program should translate and execute without error

• TF program failure on execution, but not on translation

• FE should fail to translate, but if it does, execution is expected (for
example, with a trivial syntax error)

Whetstone, Kidsgrove Action. Action is classified four way, which in increasing
gravity are:

• C correct

• R action contrary to the Report

• M action contrary to the Manual

32

• D no diagnostic

Examples

• CC correct action on translation and execution

• CM translates, but action on execution contrary to Manual

No Expected Whetstone Kidsgrove Description
Action Action Action

1 FF C- D- Overflow on large integer and real number
2 TE CR CC Long identifier causing incorrect answer
3 TE CC M- Labelled compound statement as program
4 TE CC CC Redefinition of standard function name
5 FE C- C- Labelled statement that is not a program

6 FE C- C- Double-sided relation
7 TF CC CC Invalid assignment to name parameter
8 FE C- C- Declaration after statement
9 TE CC CC Valid but peculiar comments

10 TE CC CC Comments and strings interspersed

11 FE C- C- Invalid parameter-like comment
12 FE C- D- Invalid parameter-like comment
13 FE C- D- Labelled comment
14 FE C- D- Invalid parameter comment
15 FE C- C- Comments, strings and parameter comments interspersed

16 TE CC CC Nested strings
17 TE CC CC Use of basic-symbol-like identifiers
18 TE R- CC Long identifiers
19 TF CC CM Array parameter with incorrect dimension
20 TE CC CC Array parameter with indeterminate dimension

21 TE R- CC Array parameter varies statically, but is correct
22 TE CC CC Recursive label level test
23 TE CC M- Labels by value and by name
24 TE CC CC Arrays by value
25 TE CC CC Real number test

26 TE R- CC Maximum redeclaration in a procedure
27 TE CC D- PL/I environment control test
28 TE CC CM Recursive level test using procedure parameters
29 TE CC D- PL/I environment control test with

consistent specification
30 TE C- C- Recursive level test using label parameters

31 FE C- C- if then if syntax error
32 TE CR CR integer-real type conversion on name assignment
33 TE CC CC Procedures niested 6 deep
34 TE CC CC Blocks nested 15 deep
35 TE CC CC 300 variables in block

36 TE CC R- 60 identifiers in array segment list
37 TE CC CC for loops nested 12 deep
38 TE CC CC Conditional statements nested 24 deep
39 TE CC CC Conditional expressions nested 9 deep
40 TE CC R- Switch of 300 simple labels

41 TE CC CC Procedure with 60 parameters
42 TE CC CC Array of 12 dimensions
43 TE CC CC Simple nested expression
44 TE CC CC Complex nested expression
45 TE CC CC Nested function call

33

No Expected Whetstone Kidsgrove Description
Action Action Action

46 TE CC CC Designational expression nested 6 deep
47 TE CC D- 6 labelled dummy statements
48 TE CC CC Compound statements nested 24 deep
49 TE CC CC 15 variables on left hand-sid of assignment
50 TE CC CC For list of 60 elements

51 TE CC CC 60 arrays declared in the same declaration
52 TE CC M- Complex expression in all parts of the syntax
53 TE CC CC Integer divide
54 TE CC CC sign, entier and abs
55 TE CR CC input of real niumbers

56 TF CC CC ↑, 10 valid cases, one invalid
57 TF CC CC 0.0 ↑ 0
58 TF CC CC 0 ↑ 0
59 TF CC CC 0.0 ↑ (-1.0)
60 TF CC CC 0 ↑ (-1.0)

61 TF CC CC (-2) ↑ 3.2
62 TF CC CM 0 ↑ (-2)
63 TF CC CC 0.0 ↑ (-2)
64 FF RC RC dynamic type conversion with if then
65 TE CC CC dynamic type conversion with ↑
66 TE CC CC Test of integer operators and priorities
67 TF CC CC dynamic type conversion with ↑
68 TE R- CC Valid switch inside for loop
69 TE R- CC switch straddling for loop, each jump being valid
70 TE R- CD Invalid jump into for loop via switch

71 TE CC R- Formal procedure calls with different parameter specifications
72 TE R- R- Formal procedure calls with different number of parameters
73 TE CC CC Ackermann’s function, recursive procedure calls
74 FF C- C- Local variable in bound-pair list
75 TE CC CC Checking input against output

76 TE CC CC Use before declaration
77 TE CC M- All valid formal-actual parameter pairs
78 FF RC C- All invalid formal-actual parameter pairs
79 FF C- C- Naur’s test for CIER compiler
80 TE CC CC Array variable as control variable

81 TE CC CC Knuth for test
82 TE CC CC Function call by procedure statement
83 TE CR CD Knuth dummy switch
84 TE CC CC GAMM test
85 TE CC CC Woodger test t1

86 TE CC M- Woodger test prog
87 TE CC CC For logarithmic
88 TE CC CC Knuth side-effects
89 TE CC CC General Problem Solver
90 TE CC CC Woodger test a:z:

34

No Expected Whetstone Kidsgrove Description
Action Action Action

91 TE CC M- Woodger test switch
92 TE CC CC Woodger test p:
93 TE CC CC Knuth’s Man or boy?
94 TE CC CC Woodger test tp16:
95 TE CC M- Woodger test w2:

96 TE CC CC Woodger test r9:
97 TE CC CC Dijkstra’s sigma test
98 TE CC CC Woodger test r6:
99 TE CC CC Woodger test tp25:

100 FE MC CC Comma in declaration

101 F- C- C- Elementary syntax error: + misplaced
102 F- C- C- Elementary syntax error: variable missing
103 F- C- C- Elementary syntax error: + misplaced
104 F- C- C- Comma in middle of number
105 F- C- C- Bracket round exponent part of numbr

106 F- C- C- Variable used in exponent part of number
107 F- C- C- Digit misplaced
108 F- C- C- Semicolon missing
109 F- C- C- Constant appears as statement
110 F- C- C- Full-stop instead of comma

111 F- C- C- Missing closing bracket in expression
112 FE C- C- Variable used as procedure identifier
113 FF C- C- Wrong number of parameters to outreal
114 F- C- C- do missing
115 FE C- C- Round brackets used for square brackets

116 F- C- C- Identifier missing in declaration
117 F- C- C- One syntax error anid two type-check errors
118 FE C- D- comma instead of colon
119 F- C- C- then ommitted
120 F- C- C- semicolon ommitted at thie end of a declaration

121 TE CC CC own variables
122 TE CC CC own variables
123 TE CC CM access to uninitialised own variables
124 FE DC C- number ending in a decimal point
125 FE CC CC Number with missing digits

126 FE DC C- Exponent part of a number without a digit
127 FE C- C- Number without a digit
128 FE DC C- Number without a digit
129 TE D- CC Constant which underflows
130 TE CC CC Labels in a recursive procedure

The results can be summarised as follows. The Whetstone system passed all
the tests except five in the sense that only five of the 130 test programs produced
a result contrary to the manual (see test 100, 124, 126, 128, 129). However 13 tests
were contrary to the Report, the only deviation likely to be of practical significance
is that caused by introducing a block for every for statement (see tests 68, 69 and
70). Apart from the slow execution due to interpretation, the major defect is that
a large amount of type checking is left to execution time, so that errors can remain
dormant in code which is not executed (see tests 64 and 78).

The results from the Kidsgrove compiler cannot be regarded as satisfactory as 20
programs failed in a manner inconsistent with the manual, and nine of those did not
produce any intelligible diagnostic. In practical terms, the most severe drawback
is that no option is available for subscript checking and that compilation errors
rarely give the source text position. Fortunately, the generation of invalid code
is comparatively rare (but see tests 70 and 83). So the major difficulty with this

35

compiler is that some constructions, mainly formal procedure calls and switches,
may fail even if the program is valid (although this is somewhat unusual). The
actual error messages given in the manual could be considerably improved to avoid
the use of jargon. Since the majority of program testing of KDF9 can be performed
with the Whetstone system, the defects of the Kidsgrove compiler are not serious.

11 The ALGOL Basic symbol table

(omitted)

References

[1] AFSC (1970) User’s Manual, COBOL compiler validation system. Directorate
of systems design and development, HQ Electronic Systems Division (AFSC)
L.G. Hanscom Field, Bedford. Massachusetts.

[2] Bayer, R. (1967), Gries D. Paul M and Wiehle, H.R. The ALCOR Illinois
7090/7094 post mortem dump. Comm ACM, Vol 10, No 12, pp804-808.

[3] Brown, P.J. (1967) The ML/1 macro processor, Comm ACM, Vol 10, No 10,
pp618-623.

[4] Floyd, R.W. (1971) Towards interactive design of correct programs. IFIP
Congress 1971 Vol 1, pp.7-1O North Holland, 1972

[5] Grau, A.A. (1967), Hill U, and Langmaack, H. Translation of ALGOL 60.
Springer.

[6] Heinhold, J (1962) and Bauer, F.L. (Editors), Fachbegriffe der Program-
mierungstechnik. Ansgearbeitet vom Fachausschatz Programmieren der Gesell-
shaft für Angewandte Mathematik und Mechanik (GAMM) Oldenbourg,
Munchen.

[7] Hill, I. D. (1968) ALGOL 60 Test programs. Private communication.

[8] Haxtable, D. H. R. (1963) and Hawkins, E. N. A multipass translation scheme
for ALGOL 60. Anmual Review in Automatic Programming, Vol 3, pp163-205.

[9] IFIP (1964) Report on Input-Output procedures for ALGOL 60. Comm ACM,
Vol 7, No 10 pp628-630.

[10] Knuth, D.E. (1961) and Merner, J. N. ALGOL 60 Confidential, Comm ACM
Vol 4 No 6 pp 268-272.

[11] Knuth, D.E. (1964) Man or boy? ALGOL Bulletin, No 17, Page 7, Mathema-
tishe Centrumn, Amsterdam.

[12] Knuth, D. E. (1965) A list of the remaining trouble-spots in ALGOL 60. AL-
GOL Bulletin No 19. Mathematishe Centrum, Amsterdam.

[13] Knuth, D. E. (1967) The remaining trouble-spots in ALGOL 60. Comm ACM,
Vol 10, No 10, pp611-618.

[14] Lauer, P (1968) Formal definition of ALGOL 60. TR.25.088 1PM Laboratory,
Vienna.

[15] London, B. L. (1970) Proving programs correct: Some techniques and exam-
ples. BIT Vol 10 No 2 pp 168-182.

36

[16] London, B. L. (1971) Correctness of two compilers for a LISP subset. Stanford
Computer Science Department Report G5240.

[17] Lucas, P. (1971) Formal definition of programming languages and systems.
IFIP Congress 1971. Vol 1, pp 291-297, North Holland 1972.

[18] Naur, P. (1963) Editor, Revised report on the algorithmic language ALGOL
60. Comm ACM, Vol 6, No 1, pp 1-17.

[19] Naur, P. (1965) Checking of operand types in ALGOL compilers. BIT Vol 5
pp 151-163.

[20] Randell, B. (1964) and Russell, L. J. ALGOL 60 Implementation, APIC studies
in Data Processing No 5, Academic Press.

[21] Scowen, R. S. (1971), Hill, I. D., Hillman, A. L. and Schimell, M. SOAP — A
program which documents and edits ALGOL 60 programs. Computer Journal,
Vol 14, No 2, pp 133-135.

[22] Scowen, R. S. (1969) Babel, a new programming language. National Physical
Laboratory Report CCU 7.

[23] Scowen, R. S. (1972) Debugging computer programs, a survey with special
emphasis on ALGOL. National Physical Laboratory Report NAC 21.

[24] Sundblad, Y. (1971) The Ackermaun function, a theoretical, computational
and formula manipulative study. BIT Vol 11, pp107-119.

[25] Wichmann, B. A. (1972) Five ALGOL Compilers. Computer Journal, Vol 15,
No 1, pp8-12.

Transcribed, 1st March 1999. Amended, 27th November 2010. Some typos
removed, 14th December 2010.

37

	Introduction
	The test system
	Programming conventions
	The automatic preparation system
	The conversion program
	Comments on the test programs
	Possible extensions
	Acknowledgements
	Notes on each test
	Test summary
	The ALGOL Basic symbol table

